Accumulating evidence indicates that antibiotic exposure may lead to impaired vaccine responses1-4;however,the mechanisms underlying this association remain poorly understood.Here we prospectively followed 191 healthy...Accumulating evidence indicates that antibiotic exposure may lead to impaired vaccine responses1-4;however,the mechanisms underlying this association remain poorly understood.Here we prospectively followed 191 healthy,vaginally born,term infants from birth to 15 months,using a systems vaccinology approach to assess the effects of antibiotic exposure on immune responses to vaccination.Exposure to direct neonatal but not intrapartum antibiotics was associated with significantly lower antibody titres against various polysaccharides in the 13-valent pneumococcal conjugate vaccine and the Haemophilus influenzae type b polyribosylribitol phosphate and diphtheria toxoid antigens in the combined 6-in-1 Infanrix Hexa vaccine at 7 months of age.Blood from infants exposed to neonatal antibiotics had an inflammatory transcriptional profile before vaccination;in addition,faecal metagenomics showed reduced abundance of Bifidobacterium species in these infants at the time of vaccination,which was correlated with reduced vaccine antibody titres 6 months later.In preclinical models,responses to the 13-valent pneumococcal conjugate vaccine were strongly dependent on an intact microbiota but could be restored in germ-free mice by administering a consortium of Bifidobacterium species or a probiotic already widely used in neonatal units.Our data suggest that microbiota-targeted interventions could mitigate the detrimental effects of early-life antibiotics on vaccine immunogenicity.展开更多
Fibers with deformation-triggered responses are essential for smart textiles and wearable electronics.Here,smart core-shell elastomer fibers with a conductive core and a liquid crystal elastomer shell showing simultan...Fibers with deformation-triggered responses are essential for smart textiles and wearable electronics.Here,smart core-shell elastomer fibers with a conductive core and a liquid crystal elastomer shell showing simultaneous resistance and color responses are designed and prepared.The conductive core is consisted of interconnected liquid metal nanodroplets dispersed in a polymer matrix and the elastomer shell is made of cholesteric liquid crystals.When stretched,the fiber resistance increases as the interconnected pathways of liquid metal nanodroplets along the fiber axis become narrower,and the selective reflection color from the fiber surface blueshifts since the cholesteric pitch decreases.The smart elastomer fibers could be woven into smart textiles and respond to various mechanical deformations,including stretching,bending,compression and twisting.The average resistance change is 51%under 100%strain and its variation is smaller than 4%over 500 cycles,showing remarkable fatigue resistance.The simultaneous resistance and color responses to mechanical deformations make the fibers attractive for broad applications,such as flexible electronics.展开更多
The cardiopulmonary health of children may be affected by acute ozone(O3)exposure during physical activity[1];however,its effects in high-altitude regions such as the Xizang Plateau remain uncertain.In high-altitude a...The cardiopulmonary health of children may be affected by acute ozone(O3)exposure during physical activity[1];however,its effects in high-altitude regions such as the Xizang Plateau remain uncertain.In high-altitude areas,lower oxygen levels may cause children to experience shortness of breath or require increased respiratory effort during vigorous activities such as running.This could lead to increased pollutant inhalation,potentially elevating the burden on the cardiovascular system and triggering adverse reactions such as increased heart rate and elevated blood pressure.Furthermore,differences in physiological adaptation between Han children who have migrated to Xizang and Tibetan children who are native to the region may contribute to different reactions to environmental exposure[2].展开更多
The Nyctereutes procyonoides is highly regarded in the farming and leather industries because of the high value of its fur,which renders artificial feeding a crucial aspect.However,high-fat diets have always been asso...The Nyctereutes procyonoides is highly regarded in the farming and leather industries because of the high value of its fur,which renders artificial feeding a crucial aspect.However,high-fat diets have always been associated with a variety of digestive disorders.This study aimed to investigate the impact of high-fat diets on the gut microbiota and the mechanisms of gut damage in Nyctereutes procyonoides.16S rRNA sequencing demonstrated that high-fat diets caused diarrhea and intestinal damage through alterations in the gut microbiota:a decrease in the abundance of Firmicutes,an increase in the abundance of Proteobacteria and Actinobacteria,and an increase in the abundance of Enterococcaceae,Escherichia coli-Shigella,Clostridium and Lactobacillus.Subsequently,changes in metabolic path-ways,such as amino and fatty acid pathways,were identified by KEGG and COG enrichment analysis,and the TLR4/NF-κB/NLRP3 inflammatory signaling pathway was shown to be activated by high-fat diets.In addition,high-fat diets lead to the accumulation of ROS and MDA and reduce the activity of the antioxidant enzymes GSH-PX and SOD.C orrespondingly,the levels of proinflammatory cytokines(IL-6,IL-1βand TNF-α)were significantly increased,and the apoptosis and necrosis signaling pathways of colonic cells were detected,causing a dramatic decrease in the expression of intestinal tight junction proteins(Occludin,E-cadherin,ZO-1 and ZO-2).In conclusion,high-fat diets altered the structure of the Nyctereutes procyonoides gut microbiota community and led to colon damage.This study provides new insights into the intestinal health of Nyctereutes procyonoides.展开更多
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i...Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.展开更多
Multi-axle heavy-duty vehicles(MHVs)are essential for military equipment transport due to their safety and stability.However,braking dynamic responses between MHVs and pavement systems still remain underexplored,parti...Multi-axle heavy-duty vehicles(MHVs)are essential for military equipment transport due to their safety and stability.However,braking dynamic responses between MHVs and pavement systems still remain underexplored,particularly regarding their complex load transfer mechanisms.This paper develops an enhanced model of a multi-axle heavy-duty vehicle(MHV)coupled with the uneven and flexible pavement.An advanced coupling iterative method is proposed to solve the highly dimensional equations of the MHV-pavement coupled system.The proposed method was validated through experimental tests,with characteristic parameters of vertical accelerations showing relative errors between 0.42%and 11.80%.The coupling effect and influence mechanism of the braking process are investigated by characteristic parameters of the dynamic responses.Additionally,the influences of braking conditions and pavement parameters are analyzed in time and frequency domains in order to reveal the vibration mechanisms of the coupled system.Moreover,this study establishes a theoretical foundation for monitoring pavement health via vehicle-mounted acceleration signals,which is necessary in military transportation.展开更多
Transformations of the world unseen in a century are unfolding at a faster pace.Changes of the world,of our times,and of the historical trajectory are taking place in ways like never before.As the new round of technol...Transformations of the world unseen in a century are unfolding at a faster pace.Changes of the world,of our times,and of the historical trajectory are taking place in ways like never before.As the new round of technological revolution and industrial transformation advances,the international power structure and world order are undergoing tectonic realignments and constantly being reshaped.The protracted Ukraine crisis and the escalating Palestinian-Israeli conflict exemplify the intensification of major-power strategic rivalries and geopolitical conflicts.At the same time,non-traditional security issues are getting severe and more deeply intertwined with traditional security.Challenges such as climate change,cybersecurity,energy security,and food security are becoming critical global issues which confront humanity with unprecedented threats and herald a new era of instability and transformation for the world’s development.展开更多
Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to th...Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone.展开更多
Background:Published clinical trials have yielded controversial findings regarding the effects of sex on the benefits of immune checkpoint inhibitors(ICIs).Sex-associated differences in the efficacy of immunotherapy r...Background:Published clinical trials have yielded controversial findings regarding the effects of sex on the benefits of immune checkpoint inhibitors(ICIs).Sex-associated differences in the efficacy of immunotherapy remain an important,unresolved question.Methods:We investigated sex-biased molecular profiles across a multitude of biomarkers linked to immunotherapy responses.Multiomics data from major solid tumors in The Cancer Genome Atlas,with sufficient sample sizes(≥50 patients of each sex),were analyzed.Ninety-five molecular markers characterizing 4 distinct aspects of the tumor immune system were summarized and compared.The inverse probability of weights algorithm was used to generate well-balanced sex subgroups.Results:Our results showed that lung squamous cell carcinoma(LUSC),pancreatic adenocarcinoma,and liver hepatocellular carcinoma were the top 3 cancer types with extensive sex-biased biomarker profiles(31/95,15/95,and 14/95,respectively).Notably,although both were categorized as non–small cell lung carcinoma,LUSC harbored significantly more sex-biased immunological features than those of lung adenocarcinoma(p<0.01).We further explored the validity of this finding by analyzing ICI-responsive signatures and individual patient-level data for non–small cell lung carcinoma and found that sex had significant interaction effects on immunotherapy outcomes in LUSC(p_(interaction)<0.05),with women tending to derive greater benefits from ICIs than men.However,this difference was not apparent in the lung adenocarcinoma group(p_(interaction)=0.66),with men and women deriving comparable benefits.Conclusions:We systematically characterized sex-biased profiles of key molecular biomarkers predicting immunotherapy responses across solid tumors,which could pave the way for individualized therapeutic approaches for men and women.展开更多
Habitat fragmentation poses a significant threat to bird communities, especially those in open and semi-open ecosystems such as steppes. This study investigates how steppe birds adapt to and utilize fragmented habitat...Habitat fragmentation poses a significant threat to bird communities, especially those in open and semi-open ecosystems such as steppes. This study investigates how steppe birds adapt to and utilize fragmented habitats by combining niche modeling with ecological trait analysis. We conducted standardized point surveys to examine the habitat preferences of 32 bird species in Inner Mongolia, China, and quantified their habitat niche parameters using the Outlying Mean Index (OMI). Our results reveal distinct habitat preferences among species, with some thriving in intact environments while others are better adapted to fragmented areas. Grassland species showed high specialization along the fragmentation gradient, while others exhibited adaptability to varying levels of fragmentation. Using a Generalized Additive Model (GAM), we identified three key traits influencing habitat occupancy: hand-wing index, body mass, and range size. Specifically, species with medium hand-wing indices, moderate body mass, and larger range sizes were more likely to occupy heavily fragmented habitats. These findings provide empirical evidence on how habitat fragmentation affects bird species in steppe ecosystems. The study highlights the importance of functional traits in understanding avian responses to habitat fragmentation and offers a foundation for developing effective conservation strategies to preserve biodiversity in fragmented landscapes.展开更多
Objectives:Aerobic exercise training can increase skeletal muscle mitochondrial content.Supine exercise training with legs above the heart potentially augments these increases.However,the impact of supine exercise tra...Objectives:Aerobic exercise training can increase skeletal muscle mitochondrial content.Supine exercise training with legs above the heart potentially augments these increases.However,the impact of supine exercise training on mitochondrial biogenesis and cardiovascular adaptations remains unclear.Methods:In this single-centred,randomized,parallel arm trial,19 recreationally active individuals underwent seven sessions of either supine with legs up(SUP;n=9,6 females)or upright with legs down(UP;n=10,7 females)aerobic training on a recumbent bike at 71±7%and 71±2%of peak work rate(WRpeak),respectively.The study aimed to test the effects of training with decreased muscle oxygenation on indices of muscle mitochondrial remodelling.Secondary outcomes included exercise performance,muscle oxygenation,and cardiovascular responses.Results:Secondary outcomes revealed significant interaction effects for time to fatigue(TTF)and WRpeak in the SUP group during supine testing,suggesting enhanced exercise tolerance and performance.No between group interaction effects were observed for upright testing.No clear effects on mitochondrial biogenesis were observed based on expression of mitochondrial protein subunits and transcriptional regulators.Acutely,HRpeak was lower during the SUP Test compared to the UP Test.No central cardiovascular adaptations were observed following training.Conclusions:Our exploratory analyses showed that supine aerobic training more effectively improves supine exercise tolerance and performance compared with upright training,despite no differences in measured proteins related to mitochondrial biogenesis.Further research is needed to elucidate the mechanisms underlying these postural-specific training effects.Registration:clinicaltrials.gov:NCT04151095.展开更多
Triploid oysters are widely cultured due to their superior growth compared to diploids.However,differences in tempera-ture-salinity adaptation between di-and triploid oysters remain inconclusive.This study compared th...Triploid oysters are widely cultured due to their superior growth compared to diploids.However,differences in tempera-ture-salinity adaptation between di-and triploid oysters remain inconclusive.This study compared the survival rates,antioxidant en-zyme activities,and gene expressions in di-and triploid Pacific oyster Crassostrea gigas cultured in different temperatures(17,20,23,26,and 29℃)and salinities(18,22,26,30,and 34).Results showed that the optimum survival condition for both di-and triploids is 23℃/30.At 23℃,triploids exhibited significantly higher superoxide dismutase activity and lower heat shock protein 70(Hsp70)expression than diploids.At 29℃,triploids exhibited significantly higher survival rates than diploids.Across varying tem-peratures,triploids demonstrated significantly higher survival rates and antioxidant enzyme activities,along with lower malondialdehyde(MDA)levels and Hsp70 expression compared to diploids.The overall results demonstrate that triploids have a more robust antioxidant ca-pacity,reduced oxidative damage,and lower mortality than diploids under temperature treatments.Additionally,at a salinity of 18,triploids showed significantly higher catalase(CAT)level than diploids.Across varying salinities,triploids maintained lower MDA levels.These results suggest that triploids possess a stronger antioxidant defense under salinity treatments.In conclusion,triploid C.gigas demonstrates superior adaptation to diverse temperature and salinity conditions over diploids and are recommended for culture to improve oyster production.展开更多
BACKGROUND The integration of patient-nurse communication language and focused psychological nursing can provide a reference for nursing interventions in patients undergoing gastrointestinal surgery.AIM To analyze the...BACKGROUND The integration of patient-nurse communication language and focused psychological nursing can provide a reference for nursing interventions in patients undergoing gastrointestinal surgery.AIM To analyze the impact of patient-nurse communicative language combined with focused psychological nursing on psychological and physiological stress responses,coping styles,health behaviors,and complications in patients undergoing gastrointestinal surgery.METHODS Eighty patients who underwent gastrointestinal surgery at Northern Jiangsu People's Hospital between October 2021 and August 2024 were selected and randomly divided into two groups,with 40 patients in each group.The control group received routine nursing care,while the observation group was provided with patient-nurse communicative language combined with focused psychological nursing care.Psychological stress responses,physiological stress responses,coping styles,health behaviors,incidence of complications,and nursing satisfaction were compared between the two groups.RESULTS After nursing,the observation group showed a significant improvement in psychological stress responses,with the average score on the Connor-Davidson Resilience Scale increasing from 23.22±1.08 to 30.14±2.78(P<0.05).On postoperative awakening,the heart rate of the observation group was 78.36±2.98 times/min,significantly lower than the control group's 81.14±2.44 times/min(P<0.05),and the mean arterial blood pressure was 12.06±1.26 kPa,compared to the control group's 13.45±1.17 kPa(P<0.05).The coping style scale scores of the observation group improved from 17.25±1.40 to 23.64±1.52 for confrontation,16.94±1.24 to 12.11±1.02 for avoidance,and 21.69±2.63 to 15.32±1.41 for submission(P<0.05).The health promotion lifestyle profile scores of the observation group increased from 104.25±6.77 to 133.61±10.25(P<0.05).The incidence of complications,such as wound infection and abdominal distension,in the observation group was 2.50%,significantly lower than that in the control group(20.00%;P<0.05).Nursing satisfaction in the observation group was 95.00%,significantly higher than that in the control group(80.00%;P<0.05).CONCLUSION The integration of patient-nurse communicative language and focused psychological nursing can alleviate psychological and physiological stress responses in patients undergoing gastrointestinal surgery,improve their coping styles and health behaviors,reduce the risk of complications,and enhance nursing satisfaction,yielding ideal clinical outcomes.展开更多
In Candida species,the endoplasmic reticulum(ER)stress response—regulated by the unfolded protein response(UPR)—serves as a critical adaptive mechanism affecting both pathogenicity and antifungal resistance.This rev...In Candida species,the endoplasmic reticulum(ER)stress response—regulated by the unfolded protein response(UPR)—serves as a critical adaptive mechanism affecting both pathogenicity and antifungal resistance.This review aims to synthesize current knowledge on ER stress pathways in Candida glabrata and Candida albicans,highlighting their species-specific adaptations and therapeutic implications.We systematically analyzed peer-reviewed literature on ER stress mechanisms in Candida,focusing on comparative studies of UPR signaling.Emphasis was placed on C.glabrata’s inositol-requiring enzyme 1(IRE1)-dependent Regulated IRE1-Dependent Decay(RIDD)pathway and C.albicans’IRE1/HAC1 and calcium-mediated pathways.Connections to virulence and drug resistance were evaluated through genetic,transcriptomic,and phenotypic evidence.Candida species employ divergent UPR strategies:C.glabrata mitigates ER stress primarily via RIDD-mediated mRNA decay to reduce protein load,while C.albicans enhances folding capacity through HAC1 splicing and calcium homeostasis.These adaptations promote survival in hostile host environments(e.g.,oxidative stress,immune attacks)and are linked to resistance against azoles and echinocandins.Pharmacological disruption of UPR components(e.g.,IRE1 inhibitors)sensitizes Candida to antifungals in experimental models.ER stress response pathways are promising targets for antifungal drug development.Understanding species-specific UPR mechanisms in Candida could guide novel therapies to overcome resistance and improve treatment outcomes.展开更多
Tree canopy landscapes are an important component of urban forests and have the potential to influence human emotions.However,their influence on emotional responses remains unclear.The aims of this study were:(1)to de...Tree canopy landscapes are an important component of urban forests and have the potential to influence human emotions.However,their influence on emotional responses remains unclear.The aims of this study were:(1)to determine whether the canopy landscape affects human emotions;(2)to clarify the influence of canopy landscape on individual emotional indicators;and(3)to identify the ratio of canopy landscape elements with the most beneficial effects on human emotions.Different canopy landscape images were generated,and the self-reported emotions and neural activity of the subjects assessed before and after they viewed the images.The results of the statistical analysis were intuitively displayed by a ternary phase diagram.We found that the canopy landscape affected human emotions and different proportions of canopy landscape elements led to significant differences in excitement,depression and confusion.Higher proportions of blue elements and lower proportions of green and other elements characterized the canopy landscape with the most beneficial effect on human emotions.These findings will promote further research on canopy landscapes,inform the planning and design of urban forests,and contribute to the field of landscape architecture.展开更多
Unveiling the underlying physical mechanisms governing the fracture of brittle rocks is imperative for preventing rockbursts.The novelty of this study lies in the analysis of the dynamic response process of rock three...Unveiling the underlying physical mechanisms governing the fracture of brittle rocks is imperative for preventing rockbursts.The novelty of this study lies in the analysis of the dynamic response process of rock three-dimensional(3D)deformation under true triaxial stress,and the surge behavior of timedependent multifractal spectrum has been successfully used to warn of progressive failure inside the rock.Firstly,this study analyzed the dynamic adjustment trajectory of rock deformation,specifically lateral strain,within the framework of the Poisson effect.This analysis highlighted the intricate dependence of rock mechanical properties on the intermediate principal stress.Secondly,by defining the crack interval function(ICF),this study compared the disparities between the two crack growth stages(strengthening stage and weakening stage)under varying stress levels.It was found that the fracture activity of granite system has significant multifractal characteristics.Notably,the multifractal spectrum emerges as a valuable tool for characterizing the distinct fracture properties of rocks,encompassing both the crack scale and the associated energy.Finally,a quantitative criterion grounded in the multifractal parameters of the acoustic emission(AE)time series was formulated,and it indicates that the abrupt changes observed in the time-dependent fractal spectra can serve as precursor indicators for the progressive development of rockbursts.展开更多
Nitrogen(N)enrichment is expected to induce a greater phosphorus(P)limitation,despite the acceleration of soil P cycling.However,the changing patterns in plant P and soil available P after N enrichment,and their regul...Nitrogen(N)enrichment is expected to induce a greater phosphorus(P)limitation,despite the acceleration of soil P cycling.However,the changing patterns in plant P and soil available P after N enrichment,and their regulatory mechanisms,remain poorly understood in alpine meadows.Here,we conducted a field experiment with four N addition rates(0,5,10,and 15 g N m^(-2)yr^(-1))in an alpine meadow,and investigated the P in plants,microorganisms,and soil to determine their patterns of change after short-term N addition.Our results showed that N addition significantly increased plant biomass,and the plant P pool showed a non-linear response to the N addition gradient.Soil available P initially increased and then declined with increasing N addition,whereas the occluded inorganic P decreased markedly.The critical factors for soil available P varied with different N addition rates.At lower N addition levels(0 and 5 g N m^(-2)yr^(-1)),soil acidification facilitated the mobilization of occluded inorganic P to increase soil available P.Conversely,at higher N addition levels(10 and 15 g N m^(-2)yr^(-1)),the elevated soil microbial biomass P intensified the competition with plants for soil P,leading to a decline in soil available P.This study highlights the nonlinear responses of the plant P pool and soil available P concentration to N addition rates.These responses suggest the need for developing ecosystem models to assess different effects of increasing N rates,which would enable more accurate predictions of the plant P supply and soil P cycling under N enrichment.展开更多
Understanding water dynamics under the effect of climatic conditions is important to improve water sustainability over the medium-and long-term.Clay content can affect soil hydrothermal properties,and hence modify wat...Understanding water dynamics under the effect of climatic conditions is important to improve water sustainability over the medium-and long-term.Clay content can affect soil hydrothermal properties,and hence modify water and heat exchange between soil and atmosphere,e.g.evapotranspiration and infiltration.This work aims to develop a numerical approach to explore the influence of clay content on soil hydrothermal response to the timely climatic conditions in the Lake Chad region,Sahel Region of west-central Africa.The meteorological information at the studied points,i.e.points A and B with a clay content of 8.3%and 25%,during the year 2008 is collected from ERA5-Land hourly data.The numerical results allow for understanding the effect of clay content on the hydrothermal response of the surface soil layer.Specifically,the soil surface temperature under point A is lower than that under point B during the dry season due to the dominant effect of heat conduction.However,the converse tendency is observed during the wet season because of the combined effect of heat conduction and latent heat.The variations of soil volumetric water content are closely related to the timely interaction between the soil and atmosphere,in addition to the hydrothermal properties of soil.Moreover,the outcomes of this work improve the understanding of the heat and water dynamics under the effect of climatic conditions and clay content,and provide further insights into the potential water protection in arid and semi-arid regions in the future.展开更多
High-entropy alloys(HEA)are novel materials obtained by introducing chemical disorder through mixing multiple-principal components,performing rather attractive features together with charming and exceptional propertie...High-entropy alloys(HEA)are novel materials obtained by introducing chemical disorder through mixing multiple-principal components,performing rather attractive features together with charming and exceptional properties in comparison with traditional alloys.However,the trade-off relationship is still present between strength and ductility in HEAs,significantly limiting the practical and wide application of HEAs.Moreover,the preparation of HEAs by trial-and-error method is time-consuming and resource-wasting,hindering the high-speed and high-quality development of HEAs.Herein,the primary objective of this work is to summarize the latest advancements in HEAs,focusing on methods for predicting phase structures and the factors influencing mechanical properties.Additionally,strengthening and toughening strategies for HEAs are highlighted,thus maximizing their application potential.Besides,challenges and future investigation direction of HEAs are also identified and proposed.展开更多
文摘Accumulating evidence indicates that antibiotic exposure may lead to impaired vaccine responses1-4;however,the mechanisms underlying this association remain poorly understood.Here we prospectively followed 191 healthy,vaginally born,term infants from birth to 15 months,using a systems vaccinology approach to assess the effects of antibiotic exposure on immune responses to vaccination.Exposure to direct neonatal but not intrapartum antibiotics was associated with significantly lower antibody titres against various polysaccharides in the 13-valent pneumococcal conjugate vaccine and the Haemophilus influenzae type b polyribosylribitol phosphate and diphtheria toxoid antigens in the combined 6-in-1 Infanrix Hexa vaccine at 7 months of age.Blood from infants exposed to neonatal antibiotics had an inflammatory transcriptional profile before vaccination;in addition,faecal metagenomics showed reduced abundance of Bifidobacterium species in these infants at the time of vaccination,which was correlated with reduced vaccine antibody titres 6 months later.In preclinical models,responses to the 13-valent pneumococcal conjugate vaccine were strongly dependent on an intact microbiota but could be restored in germ-free mice by administering a consortium of Bifidobacterium species or a probiotic already widely used in neonatal units.Our data suggest that microbiota-targeted interventions could mitigate the detrimental effects of early-life antibiotics on vaccine immunogenicity.
基金supported by the National Natural Science Foundation of China(No.22278352)National Key Research and Development Program of China(No.2021YFC3001100)。
文摘Fibers with deformation-triggered responses are essential for smart textiles and wearable electronics.Here,smart core-shell elastomer fibers with a conductive core and a liquid crystal elastomer shell showing simultaneous resistance and color responses are designed and prepared.The conductive core is consisted of interconnected liquid metal nanodroplets dispersed in a polymer matrix and the elastomer shell is made of cholesteric liquid crystals.When stretched,the fiber resistance increases as the interconnected pathways of liquid metal nanodroplets along the fiber axis become narrower,and the selective reflection color from the fiber surface blueshifts since the cholesteric pitch decreases.The smart elastomer fibers could be woven into smart textiles and respond to various mechanical deformations,including stretching,bending,compression and twisting.The average resistance change is 51%under 100%strain and its variation is smaller than 4%over 500 cycles,showing remarkable fatigue resistance.The simultaneous resistance and color responses to mechanical deformations make the fibers attractive for broad applications,such as flexible electronics.
基金supported by the National Key Research and Development Program of China(grant number 2022YFC3702604)National Natural Science Foundation of China(41977374).
文摘The cardiopulmonary health of children may be affected by acute ozone(O3)exposure during physical activity[1];however,its effects in high-altitude regions such as the Xizang Plateau remain uncertain.In high-altitude areas,lower oxygen levels may cause children to experience shortness of breath or require increased respiratory effort during vigorous activities such as running.This could lead to increased pollutant inhalation,potentially elevating the burden on the cardiovascular system and triggering adverse reactions such as increased heart rate and elevated blood pressure.Furthermore,differences in physiological adaptation between Han children who have migrated to Xizang and Tibetan children who are native to the region may contribute to different reactions to environmental exposure[2].
文摘The Nyctereutes procyonoides is highly regarded in the farming and leather industries because of the high value of its fur,which renders artificial feeding a crucial aspect.However,high-fat diets have always been associated with a variety of digestive disorders.This study aimed to investigate the impact of high-fat diets on the gut microbiota and the mechanisms of gut damage in Nyctereutes procyonoides.16S rRNA sequencing demonstrated that high-fat diets caused diarrhea and intestinal damage through alterations in the gut microbiota:a decrease in the abundance of Firmicutes,an increase in the abundance of Proteobacteria and Actinobacteria,and an increase in the abundance of Enterococcaceae,Escherichia coli-Shigella,Clostridium and Lactobacillus.Subsequently,changes in metabolic path-ways,such as amino and fatty acid pathways,were identified by KEGG and COG enrichment analysis,and the TLR4/NF-κB/NLRP3 inflammatory signaling pathway was shown to be activated by high-fat diets.In addition,high-fat diets lead to the accumulation of ROS and MDA and reduce the activity of the antioxidant enzymes GSH-PX and SOD.C orrespondingly,the levels of proinflammatory cytokines(IL-6,IL-1βand TNF-α)were significantly increased,and the apoptosis and necrosis signaling pathways of colonic cells were detected,causing a dramatic decrease in the expression of intestinal tight junction proteins(Occludin,E-cadherin,ZO-1 and ZO-2).In conclusion,high-fat diets altered the structure of the Nyctereutes procyonoides gut microbiota community and led to colon damage.This study provides new insights into the intestinal health of Nyctereutes procyonoides.
基金supported by the National Natural Science Foundation of China(Grant Nos.42102346,42172301).
文摘Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.
基金National Defense Basic Scientific Research Program of China(Grant No.JCKY2021602B030).
文摘Multi-axle heavy-duty vehicles(MHVs)are essential for military equipment transport due to their safety and stability.However,braking dynamic responses between MHVs and pavement systems still remain underexplored,particularly regarding their complex load transfer mechanisms.This paper develops an enhanced model of a multi-axle heavy-duty vehicle(MHV)coupled with the uneven and flexible pavement.An advanced coupling iterative method is proposed to solve the highly dimensional equations of the MHV-pavement coupled system.The proposed method was validated through experimental tests,with characteristic parameters of vertical accelerations showing relative errors between 0.42%and 11.80%.The coupling effect and influence mechanism of the braking process are investigated by characteristic parameters of the dynamic responses.Additionally,the influences of braking conditions and pavement parameters are analyzed in time and frequency domains in order to reveal the vibration mechanisms of the coupled system.Moreover,this study establishes a theoretical foundation for monitoring pavement health via vehicle-mounted acceleration signals,which is necessary in military transportation.
文摘Transformations of the world unseen in a century are unfolding at a faster pace.Changes of the world,of our times,and of the historical trajectory are taking place in ways like never before.As the new round of technological revolution and industrial transformation advances,the international power structure and world order are undergoing tectonic realignments and constantly being reshaped.The protracted Ukraine crisis and the escalating Palestinian-Israeli conflict exemplify the intensification of major-power strategic rivalries and geopolitical conflicts.At the same time,non-traditional security issues are getting severe and more deeply intertwined with traditional security.Challenges such as climate change,cybersecurity,energy security,and food security are becoming critical global issues which confront humanity with unprecedented threats and herald a new era of instability and transformation for the world’s development.
基金support from the National Natural Science Foundation of China(Nos.51504247,52174092,51904290,and 52074259)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the China University of Mining and Technology(CUMT)Open Sharing Fund for Large-scale Instruments and Equipment(No.DYGX-2025-47)is gratefully acknowledged.
文摘Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone.
基金supported by grants from the Special Funding of China Postdoctoral Science Foundation(No.2022TQ0389)the National Natural Science Foundation of China(No.82303693)the National Postdoctoral Program for Innovative Talents(No.BX2021386)。
文摘Background:Published clinical trials have yielded controversial findings regarding the effects of sex on the benefits of immune checkpoint inhibitors(ICIs).Sex-associated differences in the efficacy of immunotherapy remain an important,unresolved question.Methods:We investigated sex-biased molecular profiles across a multitude of biomarkers linked to immunotherapy responses.Multiomics data from major solid tumors in The Cancer Genome Atlas,with sufficient sample sizes(≥50 patients of each sex),were analyzed.Ninety-five molecular markers characterizing 4 distinct aspects of the tumor immune system were summarized and compared.The inverse probability of weights algorithm was used to generate well-balanced sex subgroups.Results:Our results showed that lung squamous cell carcinoma(LUSC),pancreatic adenocarcinoma,and liver hepatocellular carcinoma were the top 3 cancer types with extensive sex-biased biomarker profiles(31/95,15/95,and 14/95,respectively).Notably,although both were categorized as non–small cell lung carcinoma,LUSC harbored significantly more sex-biased immunological features than those of lung adenocarcinoma(p<0.01).We further explored the validity of this finding by analyzing ICI-responsive signatures and individual patient-level data for non–small cell lung carcinoma and found that sex had significant interaction effects on immunotherapy outcomes in LUSC(p_(interaction)<0.05),with women tending to derive greater benefits from ICIs than men.However,this difference was not apparent in the lung adenocarcinoma group(p_(interaction)=0.66),with men and women deriving comparable benefits.Conclusions:We systematically characterized sex-biased profiles of key molecular biomarkers predicting immunotherapy responses across solid tumors,which could pave the way for individualized therapeutic approaches for men and women.
基金supported by the National Natural Science Foundation of China(No.32201304)the Fundamental Research Funds for the Central Universities(No.2412022QD026).
文摘Habitat fragmentation poses a significant threat to bird communities, especially those in open and semi-open ecosystems such as steppes. This study investigates how steppe birds adapt to and utilize fragmented habitats by combining niche modeling with ecological trait analysis. We conducted standardized point surveys to examine the habitat preferences of 32 bird species in Inner Mongolia, China, and quantified their habitat niche parameters using the Outlying Mean Index (OMI). Our results reveal distinct habitat preferences among species, with some thriving in intact environments while others are better adapted to fragmented areas. Grassland species showed high specialization along the fragmentation gradient, while others exhibited adaptability to varying levels of fragmentation. Using a Generalized Additive Model (GAM), we identified three key traits influencing habitat occupancy: hand-wing index, body mass, and range size. Specifically, species with medium hand-wing indices, moderate body mass, and larger range sizes were more likely to occupy heavily fragmented habitats. These findings provide empirical evidence on how habitat fragmentation affects bird species in steppe ecosystems. The study highlights the importance of functional traits in understanding avian responses to habitat fragmentation and offers a foundation for developing effective conservation strategies to preserve biodiversity in fragmented landscapes.
基金supported by funding provided to BJG from the Natural Sciences and Engineering Research Council of Canada(NSERCgrant no.402635).
文摘Objectives:Aerobic exercise training can increase skeletal muscle mitochondrial content.Supine exercise training with legs above the heart potentially augments these increases.However,the impact of supine exercise training on mitochondrial biogenesis and cardiovascular adaptations remains unclear.Methods:In this single-centred,randomized,parallel arm trial,19 recreationally active individuals underwent seven sessions of either supine with legs up(SUP;n=9,6 females)or upright with legs down(UP;n=10,7 females)aerobic training on a recumbent bike at 71±7%and 71±2%of peak work rate(WRpeak),respectively.The study aimed to test the effects of training with decreased muscle oxygenation on indices of muscle mitochondrial remodelling.Secondary outcomes included exercise performance,muscle oxygenation,and cardiovascular responses.Results:Secondary outcomes revealed significant interaction effects for time to fatigue(TTF)and WRpeak in the SUP group during supine testing,suggesting enhanced exercise tolerance and performance.No between group interaction effects were observed for upright testing.No clear effects on mitochondrial biogenesis were observed based on expression of mitochondrial protein subunits and transcriptional regulators.Acutely,HRpeak was lower during the SUP Test compared to the UP Test.No central cardiovascular adaptations were observed following training.Conclusions:Our exploratory analyses showed that supine aerobic training more effectively improves supine exercise tolerance and performance compared with upright training,despite no differences in measured proteins related to mitochondrial biogenesis.Further research is needed to elucidate the mechanisms underlying these postural-specific training effects.Registration:clinicaltrials.gov:NCT04151095.
基金supported by grants from the Key R&D Program of Shandong Province(No.2022LZGCQY010)the National Natural Science Foundation of China(No.32373115)the China Agriculture Research System Project(No.CARS-49).
文摘Triploid oysters are widely cultured due to their superior growth compared to diploids.However,differences in tempera-ture-salinity adaptation between di-and triploid oysters remain inconclusive.This study compared the survival rates,antioxidant en-zyme activities,and gene expressions in di-and triploid Pacific oyster Crassostrea gigas cultured in different temperatures(17,20,23,26,and 29℃)and salinities(18,22,26,30,and 34).Results showed that the optimum survival condition for both di-and triploids is 23℃/30.At 23℃,triploids exhibited significantly higher superoxide dismutase activity and lower heat shock protein 70(Hsp70)expression than diploids.At 29℃,triploids exhibited significantly higher survival rates than diploids.Across varying tem-peratures,triploids demonstrated significantly higher survival rates and antioxidant enzyme activities,along with lower malondialdehyde(MDA)levels and Hsp70 expression compared to diploids.The overall results demonstrate that triploids have a more robust antioxidant ca-pacity,reduced oxidative damage,and lower mortality than diploids under temperature treatments.Additionally,at a salinity of 18,triploids showed significantly higher catalase(CAT)level than diploids.Across varying salinities,triploids maintained lower MDA levels.These results suggest that triploids possess a stronger antioxidant defense under salinity treatments.In conclusion,triploid C.gigas demonstrates superior adaptation to diverse temperature and salinity conditions over diploids and are recommended for culture to improve oyster production.
文摘BACKGROUND The integration of patient-nurse communication language and focused psychological nursing can provide a reference for nursing interventions in patients undergoing gastrointestinal surgery.AIM To analyze the impact of patient-nurse communicative language combined with focused psychological nursing on psychological and physiological stress responses,coping styles,health behaviors,and complications in patients undergoing gastrointestinal surgery.METHODS Eighty patients who underwent gastrointestinal surgery at Northern Jiangsu People's Hospital between October 2021 and August 2024 were selected and randomly divided into two groups,with 40 patients in each group.The control group received routine nursing care,while the observation group was provided with patient-nurse communicative language combined with focused psychological nursing care.Psychological stress responses,physiological stress responses,coping styles,health behaviors,incidence of complications,and nursing satisfaction were compared between the two groups.RESULTS After nursing,the observation group showed a significant improvement in psychological stress responses,with the average score on the Connor-Davidson Resilience Scale increasing from 23.22±1.08 to 30.14±2.78(P<0.05).On postoperative awakening,the heart rate of the observation group was 78.36±2.98 times/min,significantly lower than the control group's 81.14±2.44 times/min(P<0.05),and the mean arterial blood pressure was 12.06±1.26 kPa,compared to the control group's 13.45±1.17 kPa(P<0.05).The coping style scale scores of the observation group improved from 17.25±1.40 to 23.64±1.52 for confrontation,16.94±1.24 to 12.11±1.02 for avoidance,and 21.69±2.63 to 15.32±1.41 for submission(P<0.05).The health promotion lifestyle profile scores of the observation group increased from 104.25±6.77 to 133.61±10.25(P<0.05).The incidence of complications,such as wound infection and abdominal distension,in the observation group was 2.50%,significantly lower than that in the control group(20.00%;P<0.05).Nursing satisfaction in the observation group was 95.00%,significantly higher than that in the control group(80.00%;P<0.05).CONCLUSION The integration of patient-nurse communicative language and focused psychological nursing can alleviate psychological and physiological stress responses in patients undergoing gastrointestinal surgery,improve their coping styles and health behaviors,reduce the risk of complications,and enhance nursing satisfaction,yielding ideal clinical outcomes.
文摘In Candida species,the endoplasmic reticulum(ER)stress response—regulated by the unfolded protein response(UPR)—serves as a critical adaptive mechanism affecting both pathogenicity and antifungal resistance.This review aims to synthesize current knowledge on ER stress pathways in Candida glabrata and Candida albicans,highlighting their species-specific adaptations and therapeutic implications.We systematically analyzed peer-reviewed literature on ER stress mechanisms in Candida,focusing on comparative studies of UPR signaling.Emphasis was placed on C.glabrata’s inositol-requiring enzyme 1(IRE1)-dependent Regulated IRE1-Dependent Decay(RIDD)pathway and C.albicans’IRE1/HAC1 and calcium-mediated pathways.Connections to virulence and drug resistance were evaluated through genetic,transcriptomic,and phenotypic evidence.Candida species employ divergent UPR strategies:C.glabrata mitigates ER stress primarily via RIDD-mediated mRNA decay to reduce protein load,while C.albicans enhances folding capacity through HAC1 splicing and calcium homeostasis.These adaptations promote survival in hostile host environments(e.g.,oxidative stress,immune attacks)and are linked to resistance against azoles and echinocandins.Pharmacological disruption of UPR components(e.g.,IRE1 inhibitors)sensitizes Candida to antifungals in experimental models.ER stress response pathways are promising targets for antifungal drug development.Understanding species-specific UPR mechanisms in Candida could guide novel therapies to overcome resistance and improve treatment outcomes.
基金co-funded by the Talent Initiation Program of the Scientific Research Development Fund of Zhejiang A&F University(2021LFR041and 2022LFR040)the National Natural Science Foundation of China(52278084).
文摘Tree canopy landscapes are an important component of urban forests and have the potential to influence human emotions.However,their influence on emotional responses remains unclear.The aims of this study were:(1)to determine whether the canopy landscape affects human emotions;(2)to clarify the influence of canopy landscape on individual emotional indicators;and(3)to identify the ratio of canopy landscape elements with the most beneficial effects on human emotions.Different canopy landscape images were generated,and the self-reported emotions and neural activity of the subjects assessed before and after they viewed the images.The results of the statistical analysis were intuitively displayed by a ternary phase diagram.We found that the canopy landscape affected human emotions and different proportions of canopy landscape elements led to significant differences in excitement,depression and confusion.Higher proportions of blue elements and lower proportions of green and other elements characterized the canopy landscape with the most beneficial effect on human emotions.These findings will promote further research on canopy landscapes,inform the planning and design of urban forests,and contribute to the field of landscape architecture.
基金funding support from the National Natural Science Foundation of China(Grant No.U2034207)the Natural Science Foundation of Hebei Province(Grant No.E2021210099).
文摘Unveiling the underlying physical mechanisms governing the fracture of brittle rocks is imperative for preventing rockbursts.The novelty of this study lies in the analysis of the dynamic response process of rock three-dimensional(3D)deformation under true triaxial stress,and the surge behavior of timedependent multifractal spectrum has been successfully used to warn of progressive failure inside the rock.Firstly,this study analyzed the dynamic adjustment trajectory of rock deformation,specifically lateral strain,within the framework of the Poisson effect.This analysis highlighted the intricate dependence of rock mechanical properties on the intermediate principal stress.Secondly,by defining the crack interval function(ICF),this study compared the disparities between the two crack growth stages(strengthening stage and weakening stage)under varying stress levels.It was found that the fracture activity of granite system has significant multifractal characteristics.Notably,the multifractal spectrum emerges as a valuable tool for characterizing the distinct fracture properties of rocks,encompassing both the crack scale and the associated energy.Finally,a quantitative criterion grounded in the multifractal parameters of the acoustic emission(AE)time series was formulated,and it indicates that the abrupt changes observed in the time-dependent fractal spectra can serve as precursor indicators for the progressive development of rockbursts.
基金funded by the National Natural Science Foundation of China(31971746 and 32171685)。
文摘Nitrogen(N)enrichment is expected to induce a greater phosphorus(P)limitation,despite the acceleration of soil P cycling.However,the changing patterns in plant P and soil available P after N enrichment,and their regulatory mechanisms,remain poorly understood in alpine meadows.Here,we conducted a field experiment with four N addition rates(0,5,10,and 15 g N m^(-2)yr^(-1))in an alpine meadow,and investigated the P in plants,microorganisms,and soil to determine their patterns of change after short-term N addition.Our results showed that N addition significantly increased plant biomass,and the plant P pool showed a non-linear response to the N addition gradient.Soil available P initially increased and then declined with increasing N addition,whereas the occluded inorganic P decreased markedly.The critical factors for soil available P varied with different N addition rates.At lower N addition levels(0 and 5 g N m^(-2)yr^(-1)),soil acidification facilitated the mobilization of occluded inorganic P to increase soil available P.Conversely,at higher N addition levels(10 and 15 g N m^(-2)yr^(-1)),the elevated soil microbial biomass P intensified the competition with plants for soil P,leading to a decline in soil available P.This study highlights the nonlinear responses of the plant P pool and soil available P concentration to N addition rates.These responses suggest the need for developing ecosystem models to assess different effects of increasing N rates,which would enable more accurate predictions of the plant P supply and soil P cycling under N enrichment.
基金the National Natural Science Foundation of China(Grant No.42207171).
文摘Understanding water dynamics under the effect of climatic conditions is important to improve water sustainability over the medium-and long-term.Clay content can affect soil hydrothermal properties,and hence modify water and heat exchange between soil and atmosphere,e.g.evapotranspiration and infiltration.This work aims to develop a numerical approach to explore the influence of clay content on soil hydrothermal response to the timely climatic conditions in the Lake Chad region,Sahel Region of west-central Africa.The meteorological information at the studied points,i.e.points A and B with a clay content of 8.3%and 25%,during the year 2008 is collected from ERA5-Land hourly data.The numerical results allow for understanding the effect of clay content on the hydrothermal response of the surface soil layer.Specifically,the soil surface temperature under point A is lower than that under point B during the dry season due to the dominant effect of heat conduction.However,the converse tendency is observed during the wet season because of the combined effect of heat conduction and latent heat.The variations of soil volumetric water content are closely related to the timely interaction between the soil and atmosphere,in addition to the hydrothermal properties of soil.Moreover,the outcomes of this work improve the understanding of the heat and water dynamics under the effect of climatic conditions and clay content,and provide further insights into the potential water protection in arid and semi-arid regions in the future.
基金supported by the National Natural Science Foundation of China(Nos.52375451,52005396)Shandong Provincial Natural Science Foundation,China(Nos.ZR2023YQ052,ZR2023ME087)+6 种基金Shandong Provincial Technological SME Innovation Capability Promotion Project,China(No.2023TSGC0375)Young Taishan Scholars Program of Shandong Province,China(No.tsqn202306041)Guangdong Basic and Applied Basic Research Foundation,China(No.2023 A1515010044)Shandong Provincial Youth Innovation Team,China(No.2022KJ038)Open Project of State Key Laboratory of Solid Lubrication,China(No.LSL-22-11)Young Talent Fund of University Association for Science and Technology in Shaanxi,China(No.20210414)Qilu Youth Scholar Project Funding of Shandong University,China。
文摘High-entropy alloys(HEA)are novel materials obtained by introducing chemical disorder through mixing multiple-principal components,performing rather attractive features together with charming and exceptional properties in comparison with traditional alloys.However,the trade-off relationship is still present between strength and ductility in HEAs,significantly limiting the practical and wide application of HEAs.Moreover,the preparation of HEAs by trial-and-error method is time-consuming and resource-wasting,hindering the high-speed and high-quality development of HEAs.Herein,the primary objective of this work is to summarize the latest advancements in HEAs,focusing on methods for predicting phase structures and the factors influencing mechanical properties.Additionally,strengthening and toughening strategies for HEAs are highlighted,thus maximizing their application potential.Besides,challenges and future investigation direction of HEAs are also identified and proposed.