In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select...In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances.展开更多
A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The f...A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30.展开更多
An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the obj...An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.展开更多
To solve the resource-constrained project scheduling problem(RCPSP),a hybrid ant colony optimization(HACO)approach is presented.To improve the quality of the schedules,the HACO is incorporated with an extended double ...To solve the resource-constrained project scheduling problem(RCPSP),a hybrid ant colony optimization(HACO)approach is presented.To improve the quality of the schedules,the HACO is incorporated with an extended double justification in which the activity splitting is applied to predict whether the schedule could be improved.The HACO is tested on the set of large benchmark problems from the project scheduling problem library(PSPLIB).The computational result shows that the proposed algo-rithm can improve the quality of the schedules efficiently.展开更多
This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable dec...This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality.展开更多
This paper presents a new method to solve the resource-constrained project scheduling problem for software development. In this method,activity duration times are described as fuzzy variables and resource-constrained ...This paper presents a new method to solve the resource-constrained project scheduling problem for software development. In this method,activity duration times are described as fuzzy variables and resource-constrained software project scheduling problems are described as fuzzy programming models. First,how to model the software project scheduling problem under the fuzzy environment conditions is proposed. Second,in order to satisfy the different requirements of decision-making,two novel fuzzy project scheduling models,expected cost model and credibility maximization model,are suggested. Third,a hybrid intelligent algorithm integrated by genetic algorithm and fuzzy simulation is designed to solve the above two fuzzy programming models. Numerical experiments illustrate the effectiveness of the hybrid intelligent algorithm.展开更多
This paper presents a new genetic algorithm for the resource-constrained project scheduling problem(RCPSP).The algorithm employs a standardized random key(SRK) vector representation with an additional gene that determ...This paper presents a new genetic algorithm for the resource-constrained project scheduling problem(RCPSP).The algorithm employs a standardized random key(SRK) vector representation with an additional gene that determines whether the serial or parallel schedule generation scheme(SGS) is to be used as the decoding procedure.The iterative forward-backward improvement as the local search procedure is applied upon all generated solutions to schedule the project three times and obtain an SRK vector,which is rese...展开更多
Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as r...Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as resourceconstrained project scheduling problems(RCPSPs).To solve RCPSP problems in offshore engineering construction more rapidly,a hybrid genetic algorithmwas established.To solve the defects of genetic algorithms,which easily fall into the local optimal solution,a local search operation was added to a genetic algorithm to defend the offspring after crossover/mutation.Then,an elitist strategy and adaptive operators were adopted to protect the generated optimal solutions,reduce the computation time and avoid premature convergence.A calibrated function method was used to cater to the roulette rules,and appropriate rules for encoding,decoding and crossover/mutation were designed.Finally,a simple network was designed and validated using the case study of a real offshore project.The performance of the genetic algorithmand a simulated annealing algorithmwas compared to validate the feasibility and effectiveness of the approach.展开更多
In this paper we formulate a bi-criteria search strategy of a heuristic learning algorithm for solving multiple resource-constrained project scheduling problems. The heuristic solves problems in two phases. In the pre...In this paper we formulate a bi-criteria search strategy of a heuristic learning algorithm for solving multiple resource-constrained project scheduling problems. The heuristic solves problems in two phases. In the pre-processing phase, the algorithm estimates distance between a state and the goal state and measures complexity of problem instances. In the search phase, the algorithm uses estimates of the pre-processing phase to further estimate distances to the goal state. The search continues in a stepwise generation of a series of intermediate states through search path evaluation process with backtracking. Developments of intermediate states are exclusively based on a bi-criteria new state selection technique where we consider resource utilization and duration estimate to the goal state. We also propose a variable weighting technique based on initial problem complexity measures. Introducing this technique allows the algorithm to efficiently solve complex project scheduling problems. A numerical example illustrates the algorithm and performance is evaluated by extensive experimentation with various problem parameters. Computational results indicate significance of the algorithm in terms of solution quality and computational performance.展开更多
To solve the resource-constrained multiple project scheduling problem(RCMPSP) more effectively,a method based on timed colored Petri net(TCPN) was proposed.In this methodology,firstly a novel mapping mechanism between...To solve the resource-constrained multiple project scheduling problem(RCMPSP) more effectively,a method based on timed colored Petri net(TCPN) was proposed.In this methodology,firstly a novel mapping mechanism between traditional network diagram such as CPM(critical path method)/PERT(program evaluation and review technique) and TCPN was presented.Then a primary TCPN(PTCPN) for solving RCMPSP was modeled based on the proposed mapping mechanism.Meanwhile,the object PTCPN was used to simulate the multiple projects scheduling and to find the approximately optimal value of RCMPSP.Finally,the performance of the proposed approach for solving RCMPSP was validated by executing a mould manufacturing example.展开更多
Dependency Structure Matrix (DSM) is a successful and powerful tool for representing and analyzing dependencies between the items, but for external influencing factors it cannot charge effectively. This paper sets t...Dependency Structure Matrix (DSM) is a successful and powerful tool for representing and analyzing dependencies between the items, but for external influencing factors it cannot charge effectively. This paper sets the stage for connecting the activities and resources, which not only considers information flow but also resources constrains.We first introduce the DSM to represent the degree of overlapping between the activities in a project. Then we present the Extended DSM combined former DSM and resource factors to calculate the project duration. Finally, the practical significance of the Extended DSM is confirmed by an illustrative example.展开更多
This paper deals with the problem of project scheduling subject to multiple execution modes with non-renewable resources, and a model that handles some of monetary issues in real world applications.The objective is to...This paper deals with the problem of project scheduling subject to multiple execution modes with non-renewable resources, and a model that handles some of monetary issues in real world applications.The objective is to schedule the activities to maximize the expected net present value(NPV) of the project, taking into account the activity costs, the activity durations, and the cash flows generated by successfully completing an activity.Owing to the combinatorial nature of this problem, the current study develops a hybrid of branch-and-bound procedure and memetic algorithm to enhance both mode assignment and activity scheduling.Modifications for the makespan minimization problem have been made through a set of benchmark problem instances.Algorithmic performance is rated on the maximization of the project NPV and computational results show that the two-phase hybrid metaheuristic performs competitively for all instances of different problem sizes.展开更多
Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both g...Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations.展开更多
The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risk...The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risks,including floods and droughts.Recent research associated with the implementation of the Global Monsoons Model Intercomparison Project under the umbrella of CMIP6 has advanced our understanding of its historical variability and driving mechanisms.Observational data reveal a 20th-century shift:increased rainfall pre-1950s,followed by aridification and partial recovery post-1980s,driven by both internal variability(e.g.,Atlantic Multidecadal Oscillation)and external forcings(greenhouse gases,aerosols),while ENSO drives interannual variability through ocean-atmosphere interactions.Future projections under greenhouse forcing suggest long-term monsoon intensification,though regional disparities and model uncertainties persist.Models indicate robust trends but struggle to quantify extremes,where thermodynamic effects(warming-induced moisture rise)uniformly boost heavy rainfall,while dynamical shifts(circulation changes)create spatial heterogeneity.Volcanic eruptions and proposed solar radiation modification(SRM)further complicate predictions:tropical eruptions suppress monsoons,whereas high-latitude events alter cross-equatorial flows,highlighting unresolved feedbacks.The emergent constraint approach is booming in terms of correcting future projections and reducing uncertainty with respect to the global monsoons.Critical challenges remain.Model biases and sparse 20th-century observational data hinder accurate attribution.The interplay between natural variability and anthropogenic forcings,along with nonlinear extreme precipitation risks under warming,demands deeper mechanistic insights.Additionally,SRM’s regional impacts and hemispheric monsoon interactions require systematic evaluation.Addressing these gaps necessitates enhanced observational networks,refined climate models,and interdisciplinary efforts to disentangle multiscale drivers,ultimately improving resilience strategies for monsoon-dependent regions.展开更多
Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods...Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results.展开更多
Andrew Wangota,a 48-year-old Ugandan farmer,has been using agrivoltaics technology,a solar technology that uses agricultural land for both food production and solar power generation,on his farm in Bunashimolo Parish,B...Andrew Wangota,a 48-year-old Ugandan farmer,has been using agrivoltaics technology,a solar technology that uses agricultural land for both food production and solar power generation,on his farm in Bunashimolo Parish,Bukyiende Subcounty in Uganda where he has been cultivating plantain,coffee and Irish potatoes for the past 16 years.展开更多
In Wireless Multimedia Sensor Networks(WMSNs),nodes capable of retrieving video,audio,images,and small scale sensor data,tend to generate immense traffic of various types.The energy-efficient transmission of such a va...In Wireless Multimedia Sensor Networks(WMSNs),nodes capable of retrieving video,audio,images,and small scale sensor data,tend to generate immense traffic of various types.The energy-efficient transmission of such a vast amount of heterogeneous multimedia content while simultaneously ensuring the quality of service and optimal energy consumption is indispensable.Therefore,we propose a Power-Efficient Wireless Multimedia of Things(PE-WMoT),a robust and energy-efficient cluster-based mechanism to improve the overall lifetime of WMSNs.In a PE-WMoT,nodes declare themselves Cluster Heads(CHs)based on available resources.Once cluster formation and CH declaration processes are completed,the Sub-Cluster(SC)formation process triggers,in which application base nodes within close vicinity of each other organize themselves under the administration of a Sub-Cluster Head(SCH).The SCH gathers data from member nodes,removes redundancies,and forwards miniaturized data to its respective CH.PE-WMoT adopts a fuzzy-based technique named the analytical hierarchical process,which enables CHs to select an optimal SCH among available SCs.A PE-WMoT also devises a robust scheduling mechanism between CH,SCH,and child nodes to enable collision-free data transmission.Simulation results revealed that a PE-WMoT significantly reduces the number of redundant packet transmissions,improves energy consumption of the network,and effectively increases network throughput.展开更多
Recently,Opportunistic Networks(OppNets)are considered to be one of the most attractive developments of Mobile Ad Hoc Networks that have arisen thanks to the development of intelligent devices.OppNets are characterize...Recently,Opportunistic Networks(OppNets)are considered to be one of the most attractive developments of Mobile Ad Hoc Networks that have arisen thanks to the development of intelligent devices.OppNets are characterized by a rough and dynamic topology as well as unpredictable contacts and contact times.Data is forwarded and stored in intermediate nodes until the next opportunity occurs.Therefore,achieving a high delivery ratio in OppNets is a challenging issue.It is imperative that any routing protocol use network resources,as far as they are available,in order to achieve higher network performance.In this article,we introduce the Resource-Aware Routing(ReAR)protocol which dynamically controls the buffer usage with the aim of balancing the load in resource-constrained,stateless and non-social OppNets.The ReAR protocol invokes our recently introduced mutual informationbased weighting approach to estimate the impact of the buffer size on the network performance and ultimately to regulate the buffer consumption in real time.The proposed routing protocol is proofed conceptually and simulated using the Opportunistic Network Environment simulator.Experiments show that the ReAR protocol outperforms a set of well-known routing protocols such as EBR,Epidemic MaxProp,energy-aware Spray and Wait and energy-aware PRoPHETin terms of message delivery ratio and overhead ratio.展开更多
基金The Spring Plan of Ministry of Education,China(No.Z2012017)
文摘In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances.
基金supported by the National Natural Science Foundation of China(71171038)
文摘A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30.
基金supported by the National Natural Science Foundation of China(6083500460775047+4 种基金60974048)the National High Technology Research and Development Program of China(863 Program)(2007AA0422442008AA04Z214)the Natural Science Foundation of Hunan Province(09JJ9012)Scientific Research Fund of Hunan Provincial Education Department(08C337)
文摘An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.
基金supported by Liaoning BaiQianWan Talents Program(20071866-25)
文摘To solve the resource-constrained project scheduling problem(RCPSP),a hybrid ant colony optimization(HACO)approach is presented.To improve the quality of the schedules,the HACO is incorporated with an extended double justification in which the activity splitting is applied to predict whether the schedule could be improved.The HACO is tested on the set of large benchmark problems from the project scheduling problem library(PSPLIB).The computational result shows that the proposed algo-rithm can improve the quality of the schedules efficiently.
文摘This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality.
基金Supported by the National Natural Science Foundation of China (60975050)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20070486081)
文摘This paper presents a new method to solve the resource-constrained project scheduling problem for software development. In this method,activity duration times are described as fuzzy variables and resource-constrained software project scheduling problems are described as fuzzy programming models. First,how to model the software project scheduling problem under the fuzzy environment conditions is proposed. Second,in order to satisfy the different requirements of decision-making,two novel fuzzy project scheduling models,expected cost model and credibility maximization model,are suggested. Third,a hybrid intelligent algorithm integrated by genetic algorithm and fuzzy simulation is designed to solve the above two fuzzy programming models. Numerical experiments illustrate the effectiveness of the hybrid intelligent algorithm.
文摘This paper presents a new genetic algorithm for the resource-constrained project scheduling problem(RCPSP).The algorithm employs a standardized random key(SRK) vector representation with an additional gene that determines whether the serial or parallel schedule generation scheme(SGS) is to be used as the decoding procedure.The iterative forward-backward improvement as the local search procedure is applied upon all generated solutions to schedule the project three times and obtain an SRK vector,which is rese...
基金funded by the Ministry of Industry and Information Technology of the People’s Republic of China(Nos.[2018]473,[2019]331).
文摘Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as resourceconstrained project scheduling problems(RCPSPs).To solve RCPSP problems in offshore engineering construction more rapidly,a hybrid genetic algorithmwas established.To solve the defects of genetic algorithms,which easily fall into the local optimal solution,a local search operation was added to a genetic algorithm to defend the offspring after crossover/mutation.Then,an elitist strategy and adaptive operators were adopted to protect the generated optimal solutions,reduce the computation time and avoid premature convergence.A calibrated function method was used to cater to the roulette rules,and appropriate rules for encoding,decoding and crossover/mutation were designed.Finally,a simple network was designed and validated using the case study of a real offshore project.The performance of the genetic algorithmand a simulated annealing algorithmwas compared to validate the feasibility and effectiveness of the approach.
文摘In this paper we formulate a bi-criteria search strategy of a heuristic learning algorithm for solving multiple resource-constrained project scheduling problems. The heuristic solves problems in two phases. In the pre-processing phase, the algorithm estimates distance between a state and the goal state and measures complexity of problem instances. In the search phase, the algorithm uses estimates of the pre-processing phase to further estimate distances to the goal state. The search continues in a stepwise generation of a series of intermediate states through search path evaluation process with backtracking. Developments of intermediate states are exclusively based on a bi-criteria new state selection technique where we consider resource utilization and duration estimate to the goal state. We also propose a variable weighting technique based on initial problem complexity measures. Introducing this technique allows the algorithm to efficiently solve complex project scheduling problems. A numerical example illustrates the algorithm and performance is evaluated by extensive experimentation with various problem parameters. Computational results indicate significance of the algorithm in terms of solution quality and computational performance.
文摘To solve the resource-constrained multiple project scheduling problem(RCMPSP) more effectively,a method based on timed colored Petri net(TCPN) was proposed.In this methodology,firstly a novel mapping mechanism between traditional network diagram such as CPM(critical path method)/PERT(program evaluation and review technique) and TCPN was presented.Then a primary TCPN(PTCPN) for solving RCMPSP was modeled based on the proposed mapping mechanism.Meanwhile,the object PTCPN was used to simulate the multiple projects scheduling and to find the approximately optimal value of RCMPSP.Finally,the performance of the proposed approach for solving RCMPSP was validated by executing a mould manufacturing example.
基金supported by the National Natural Science Foundation of China under Grant No.71172123the Aviation Science Fund under Grant No.2012ZG53083the Soft Science Foundation of Shaanxi Province and the funds of NPU for Humanities and social sciences and management revilization under Grant No.RW201105
文摘Dependency Structure Matrix (DSM) is a successful and powerful tool for representing and analyzing dependencies between the items, but for external influencing factors it cannot charge effectively. This paper sets the stage for connecting the activities and resources, which not only considers information flow but also resources constrains.We first introduce the DSM to represent the degree of overlapping between the activities in a project. Then we present the Extended DSM combined former DSM and resource factors to calculate the project duration. Finally, the practical significance of the Extended DSM is confirmed by an illustrative example.
文摘This paper deals with the problem of project scheduling subject to multiple execution modes with non-renewable resources, and a model that handles some of monetary issues in real world applications.The objective is to schedule the activities to maximize the expected net present value(NPV) of the project, taking into account the activity costs, the activity durations, and the cash flows generated by successfully completing an activity.Owing to the combinatorial nature of this problem, the current study develops a hybrid of branch-and-bound procedure and memetic algorithm to enhance both mode assignment and activity scheduling.Modifications for the makespan minimization problem have been made through a set of benchmark problem instances.Algorithmic performance is rated on the maximization of the project NPV and computational results show that the two-phase hybrid metaheuristic performs competitively for all instances of different problem sizes.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2342210 and 42275043)the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant Nos.J2223806,ZDJ2024-25 and ZDJ2025-34)。
文摘Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608904)the International Partnership Program of the Chinese Academy of Sciences(Grant Nos.060GJHZ2023079GC and 134111KYSB20160031)+1 种基金supported by the Office of Science,U.S.Department of Energy(DOE)Biological and Environmental Research as part of the Regional and Global Model Analysis program area through the Water Cycle and Climate Extremes Modeling(WACCEM)scientific focus areaoperated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830。
文摘The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risks,including floods and droughts.Recent research associated with the implementation of the Global Monsoons Model Intercomparison Project under the umbrella of CMIP6 has advanced our understanding of its historical variability and driving mechanisms.Observational data reveal a 20th-century shift:increased rainfall pre-1950s,followed by aridification and partial recovery post-1980s,driven by both internal variability(e.g.,Atlantic Multidecadal Oscillation)and external forcings(greenhouse gases,aerosols),while ENSO drives interannual variability through ocean-atmosphere interactions.Future projections under greenhouse forcing suggest long-term monsoon intensification,though regional disparities and model uncertainties persist.Models indicate robust trends but struggle to quantify extremes,where thermodynamic effects(warming-induced moisture rise)uniformly boost heavy rainfall,while dynamical shifts(circulation changes)create spatial heterogeneity.Volcanic eruptions and proposed solar radiation modification(SRM)further complicate predictions:tropical eruptions suppress monsoons,whereas high-latitude events alter cross-equatorial flows,highlighting unresolved feedbacks.The emergent constraint approach is booming in terms of correcting future projections and reducing uncertainty with respect to the global monsoons.Critical challenges remain.Model biases and sparse 20th-century observational data hinder accurate attribution.The interplay between natural variability and anthropogenic forcings,along with nonlinear extreme precipitation risks under warming,demands deeper mechanistic insights.Additionally,SRM’s regional impacts and hemispheric monsoon interactions require systematic evaluation.Addressing these gaps necessitates enhanced observational networks,refined climate models,and interdisciplinary efforts to disentangle multiscale drivers,ultimately improving resilience strategies for monsoon-dependent regions.
基金supported by the project“Romanian Hub for Artificial Intelligence-HRIA”,Smart Growth,Digitization and Financial Instruments Program,2021–2027,MySMIS No.334906.
文摘Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results.
文摘Andrew Wangota,a 48-year-old Ugandan farmer,has been using agrivoltaics technology,a solar technology that uses agricultural land for both food production and solar power generation,on his farm in Bunashimolo Parish,Bukyiende Subcounty in Uganda where he has been cultivating plantain,coffee and Irish potatoes for the past 16 years.
基金This work was supported in part by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2018-0-01411,A Micro-Service IoTWare Framework Technology Development for Ultra small IoT Device)in part by 2021 Hongik University Innovation Support program Fund.
文摘In Wireless Multimedia Sensor Networks(WMSNs),nodes capable of retrieving video,audio,images,and small scale sensor data,tend to generate immense traffic of various types.The energy-efficient transmission of such a vast amount of heterogeneous multimedia content while simultaneously ensuring the quality of service and optimal energy consumption is indispensable.Therefore,we propose a Power-Efficient Wireless Multimedia of Things(PE-WMoT),a robust and energy-efficient cluster-based mechanism to improve the overall lifetime of WMSNs.In a PE-WMoT,nodes declare themselves Cluster Heads(CHs)based on available resources.Once cluster formation and CH declaration processes are completed,the Sub-Cluster(SC)formation process triggers,in which application base nodes within close vicinity of each other organize themselves under the administration of a Sub-Cluster Head(SCH).The SCH gathers data from member nodes,removes redundancies,and forwards miniaturized data to its respective CH.PE-WMoT adopts a fuzzy-based technique named the analytical hierarchical process,which enables CHs to select an optimal SCH among available SCs.A PE-WMoT also devises a robust scheduling mechanism between CH,SCH,and child nodes to enable collision-free data transmission.Simulation results revealed that a PE-WMoT significantly reduces the number of redundant packet transmissions,improves energy consumption of the network,and effectively increases network throughput.
文摘Recently,Opportunistic Networks(OppNets)are considered to be one of the most attractive developments of Mobile Ad Hoc Networks that have arisen thanks to the development of intelligent devices.OppNets are characterized by a rough and dynamic topology as well as unpredictable contacts and contact times.Data is forwarded and stored in intermediate nodes until the next opportunity occurs.Therefore,achieving a high delivery ratio in OppNets is a challenging issue.It is imperative that any routing protocol use network resources,as far as they are available,in order to achieve higher network performance.In this article,we introduce the Resource-Aware Routing(ReAR)protocol which dynamically controls the buffer usage with the aim of balancing the load in resource-constrained,stateless and non-social OppNets.The ReAR protocol invokes our recently introduced mutual informationbased weighting approach to estimate the impact of the buffer size on the network performance and ultimately to regulate the buffer consumption in real time.The proposed routing protocol is proofed conceptually and simulated using the Opportunistic Network Environment simulator.Experiments show that the ReAR protocol outperforms a set of well-known routing protocols such as EBR,Epidemic MaxProp,energy-aware Spray and Wait and energy-aware PRoPHETin terms of message delivery ratio and overhead ratio.