The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface...The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators.展开更多
Enhancing the vibration resistance of micro-electro-mechanical systems(MEMS)resonators in complex environments is a critical issue that urgently needs to be addressed.This paper presents a chip-scale locally resonant ...Enhancing the vibration resistance of micro-electro-mechanical systems(MEMS)resonators in complex environments is a critical issue that urgently needs to be addressed.This paper presents a chip-scale locally resonant phononic crystal(LRPnC)plate based on a folded helical beam structure.Through finite element simulation and theoretical analysis,the bandgap characteristics and vibration suppression mechanisms of this structure were thoroughly investigated.The results show that the structure exhibits a complete bandgap in the frequency range of 9.867-14.605 kHz,and the bandgap can be effectively tuned by adjusting the structural parameters.Based on this,the influence of the number of unit cell layers on the vibration reduction performance was further studied,and a finite periodic LRPnC plate was constructed.Numerical studies have shown that the LRPnC plate can achieve more than-30 dB of vibration attenuation within the bandgap and effectively suppress y-direction coupling vibrations caused by x-direction propagating waves.In addition,its chip-scale size and planar structure design provide new ideas and methods for the engineering application of phononic crystal technology in the field of MEMS vibration isolation.展开更多
As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevic...As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevices with directional functionality.However,due to the significant challenges in applying conventional techniques to nanoscale samples,the in-plane anisotropy of CaNb_(2)O_(6)has still remained unexplored.Here,we leverage the resonant nanoelectromechanical systems(NEMS)platform to successfully quantify both the mechanical and thermal anisotropies in such an ultrathin WBG crystal.Specifically,by measuring the dynamic response in both spectral and spatial domains,we determine the anisotropic Young’s modulus of CaNb_(2)O_(6)as E_(Y(a))=70.42 GPa and EY(b)=116.2 GPa.By further expanding this technique to cryogenic temperatures,we unveil the anisotropy in thermal expansion coefficients as α_((a))=13.4 ppm·K^(-1),α(b)=2.9 ppm·K^(-1).Interestingly,through thermal strain engineering,we successfully modulate the mode sequence and achieve a crossing of(1×2)-(2×1)modes with perfect degeneracy.Our study provides guidelines for future CaNb_(2)O_(6)nanodevices with additional degrees of freedom and new device functions.展开更多
Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of m...Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of most topology-optimized silicon–air 2D PnC slabs face significant fabrication challenges owing to restricted etching precision,and the anisotropic nature of silicon is frequently overlooked.To address these issues,this study employs the finite element method with appropriate discretization numbers and the genetic algorithm to optimize the structures and geometries of 2D silicon–air PnC slabs.The optimized square-lattice PnC slabs,featuring a rounded-cross structure oriented along the`110e directions of silicon,achieve an impressive relative bandgap(RBG)width of 82.2%for in-plane modes.When further tilted by 15° from the (100) directions within the(001)plane,the optimal RBG width is expanded to 91.4%.We fabricate and characterize thin-film piezoelectric-on-silicon LVRs,with or without optimized 2D PnC slabs.The presence of PnC slabs around anchors increases the series and parallel quality factors Q_(s) and Q_(p) from 2240 to 7118 and from 2237 to 7501,respectively,with the PnC slabs oriented along the`110e directions of silicon.展开更多
Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optim...Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optimized for a single specific function,limiting their versatility in multifunctional applications.In this work,we propose a reconfigurable microring resonator architecture designed to accommodate diverse application requirements.By integrating a cascaded Mach–Zehnder interferometer(MZI)as the microring coupler,the design enables independent control of the quality factors for pump,signal and idler photons through two tunable phase shifters.This capability allows for dynamic tuning and optimization of critical performance parameters,including photon-pair generation rate(PGR),spectral purity and single photon heralding efficiency(HE).The proposed structure is implemented on a silicon photonic chip,and experimental results exhibit a wide range of tunability for these parameters,with excellent agreement with theoretical predictions.This flexible and multi-functional design offers a promising pathway for high-performance,highly integrated on-chip quantum information processing systems.展开更多
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup...Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.展开更多
To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,u...To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential.展开更多
The rectangular optical filter is one of the most important optical switching components in the dense wavelength divi- sion multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. T...The rectangular optical filter is one of the most important optical switching components in the dense wavelength divi- sion multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated high- order silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum re- sponse. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on high- order MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 pm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.展开更多
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re...The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.展开更多
During the fabrication of quartz crystal resonators(QCRs),parallelism error is inevitably generated,which is rarely investigated.In order to reveal the influence of parallelism error on the working performance of QCRs...During the fabrication of quartz crystal resonators(QCRs),parallelism error is inevitably generated,which is rarely investigated.In order to reveal the influence of parallelism error on the working performance of QCRs,the coupled vibration of a non-parallel AT-cut quartz crystal plate with electrodes is systematically studied from the views of theoretical analysis and numerical simulations.The two-dimensional thermal incremental field equations are solved for the free vibration analysis via the coefficient-formed partial differential equation module of the COMSOL Multiphysics software,from which the frequency spectra,frequency–temperature curves,and mode shapes are discussed in detail.Additionally,the piezoelectric module is utilized to obtain the admittance response under different conditions.It is demonstrated that the parallelism error reduces the resonant frequency.Additionally,symmetry broken by the non-parallelism increases the probability of activity dip and is harmful to QCR’s thermal stability.However,if the top and bottom surfaces incline synchronously in the same direction,the influence of parallelism error is tiny.The conclusions achieved are helpful for the QCR design,and the methodology presented can also be applied to other wave devices.展开更多
Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of th...Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of the film bulk acoustic resonator (FBARs). This model provides results of FBAR excited thickness-extensional and flexure modes, and the result of frequency dispersion is proposed in which the thicknesses and impedance of the electrodes and the piezoelectric material are taken into consideration; its further simplification shows good agreement with the modified Butterworth-Van-Dyke (MBVD) model. The displacement profile reflects the vibration stress distribution of electrode shapes and the lateral resonance effect, which depends on the axis ratio of the electrode shapes a/b. The results are consistent with the 3D finite element method modeling and laser interferometry measurement in general.展开更多
We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dualchannel equalization,both based on high-Q integrated ring resonators.The devices operate in the optical t...We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dualchannel equalization,both based on high-Q integrated ring resonators.The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies.They operate via TE/TM mode birefringence in the resonator.We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.展开更多
Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation.S...Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation.Several energy dissipation mechanisms limit Q,where thermoelastic dissipation (TED) is the major one and studied in this paper.Fully coupled thermo-mechanical equations for calculating TED are formulated,and then temperature distribution in a deformed μHSR and its quality factor related to TED (QTED) are obtained by solving the equations through a finite-element method (FEM).It has been found that different fabrication process conditions can obtain various geometrical parameters in our previous studies.In order to provide guidelines for the design and fabrication of μHSRs,the effects of their geometry on resonant frequency (f0) and QTED are studied.The change of anchor height and small enough anchor radius have no effect on both f0 and QTED,but the shell size including its radius,thickness and height has significant impact on f0 and QTED.It is found that whether a μHSR has lower f0 and higher QTED or higher f0 and higher QTED can be achieved by changing these geometrical parameters.The results presented in this paper can also be applied to other similar resonators.展开更多
Diffraction effects will bring about more difficulties in actuating resonators,which are electrostatically actuated ones with sub-micrometer or nanometer dimensions,and in detecting the frequency of the resonator by o...Diffraction effects will bring about more difficulties in actuating resonators,which are electrostatically actuated ones with sub-micrometer or nanometer dimensions,and in detecting the frequency of the resonator by optical detection.To avoid the effects of diffraction,a new type of nanoelectromechanical systems(NEMS) resonators is fabricated and actuated to oscillate.As a comparison,a doubly clamped silicon beam is also fabricated and studied.The smallest width and thickness of the resonators are 180 and 200 nm,respectively.The mechanical oscillation responses of these two kinds of resonators are studied experimentally.Results show that the resonant frequencies are from 6.8 to 20 MHz,much lower than the theoretical values.Based on the simulation,it is found that over-etching is one of the important factors which results in lower frequencies than the theoretical values.It is also found that the difference between resonance frequencies of two types of resonators decreases with the increase in beam length.The quality factor is improved greatly by lowering the pressure in the sample chamber at room temperature.展开更多
The mode frequencies and the quality factors for the equilateral triangular resonator (ETR), the square resonator (SR) and the rhombus resonator (RR) are numerically calculated by the finite difference time domai...The mode frequencies and the quality factors for the equilateral triangular resonator (ETR), the square resonator (SR) and the rhombus resonator (RR) are numerically calculated by the finite difference time domain technique and the Padé approximation. The numerical results show that the resonant modes confined in an equilateral triangular cavity have much higher quality factors than those in the square or the rhombus cavities. The modes in the ETR are totally confined in transverse direction while those in the SR and RR are only partly confined. For the ETR with the side length of 4μm and the refractive index of 3 2, the mode quality factor of about 5 5×10 3 at the wavelength of 1 55μm has been obtained.展开更多
We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is c...We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is continuously adjustable whose quality factor varies from 7.9×10^(4) to 1.9×10^(5) with the extinction ratio keeping higher than 25 dB.Also a variety of coupling spanning from"under-coupling"to"over-coupling"were achieved,showing the ability to tune the quality factor from 6.0×10^(3) to 2.3×10^(5).Our design can provide an adjustable filtering method on silicon nitride photonic chip and contribute to optimize the nonlinear process for quantum photonics and all-optical signal processing.展开更多
Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and co...Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magne- toelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.展开更多
Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and s...Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and shock hazards.Single-spring-mass resonators and dual-spring-mass resonators were designed and made using lead or aluminum blocks and SWPB springs encased by PMMA(polymethyl methacrylate)or aluminum frames.These resonators were placed into mortar blocks to make metamortar specimens.Vibration attenuation effect was investigated by sweeping vibration with frequency from 50 Hz to 2000 Hz.All these meta-mortar blocks exhibit excellent vibration attenuation ability in the designed band gaps.With dual-spring-mass resonators,meta-mortar blocks have two distinct vibration attenuation bands.展开更多
The optimization method by adjusting load and distances between two adjacent coils( or resonators) is presented on basis of wireless power transfer( WPT) system with relay resonators. 2-port network and impedance matc...The optimization method by adjusting load and distances between two adjacent coils( or resonators) is presented on basis of wireless power transfer( WPT) system with relay resonators. 2-port network and impedance matching theory are applied to analyzing power flow of incidence and reflection in WPT system,then setting up power flow model. The maximum power transmission efficiency can be obtained when the load and distance between secondary resonator and output coil meets impedance matching at 2-port network's output port. The simulation and experimental results shown the impedance matching method can effectively improve and maintain transmission efficiency by adjusting load and distances between coils or relay resonators.展开更多
We investigate properties of the ponderomotive squeezing in an optomechanical system with two coupled resonators,where the tunable two-mode squeezing spectrum can be observed from the output field.It is realized that ...We investigate properties of the ponderomotive squeezing in an optomechanical system with two coupled resonators,where the tunable two-mode squeezing spectrum can be observed from the output field.It is realized that the squeezing orientation can be controlled by the detuning between the left cavity and pump laser.Especially,both cavity decay and environment temperature play a positive role in generating better pondermotive squeezing light.Strong squeezing spectra with a wide squeezing frequency range can be obtained by appropriate choice of parameters present in our optomechanical system.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20240123)the National Key Research and Development Program of China(Grant No.2022YFA1405900)the National Natural Science Foundation of China(Grant Nos.12274397,12274401,and 12034018)。
文摘The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators.
基金supported by National Natural Science Foundation of China(No.62271262).
文摘Enhancing the vibration resistance of micro-electro-mechanical systems(MEMS)resonators in complex environments is a critical issue that urgently needs to be addressed.This paper presents a chip-scale locally resonant phononic crystal(LRPnC)plate based on a folded helical beam structure.Through finite element simulation and theoretical analysis,the bandgap characteristics and vibration suppression mechanisms of this structure were thoroughly investigated.The results show that the structure exhibits a complete bandgap in the frequency range of 9.867-14.605 kHz,and the bandgap can be effectively tuned by adjusting the structural parameters.Based on this,the influence of the number of unit cell layers on the vibration reduction performance was further studied,and a finite periodic LRPnC plate was constructed.Numerical studies have shown that the LRPnC plate can achieve more than-30 dB of vibration attenuation within the bandgap and effectively suppress y-direction coupling vibrations caused by x-direction propagating waves.In addition,its chip-scale size and planar structure design provide new ideas and methods for the engineering application of phononic crystal technology in the field of MEMS vibration isolation.
基金supported by the National Key R&D Program of China(2022YFB3203600)the National Natural Science Foundation of China(Grant Nos.T2325007,62450003,62401104,62404029,U21A20459,62250073,61774029,and U23A20570)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.GZB20230107 and GZB20240109)the Natural Science Foundation of Sichuan Province(Grant Nos.2024NSFSC1430 and 2024NSFSC1408).
文摘As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevices with directional functionality.However,due to the significant challenges in applying conventional techniques to nanoscale samples,the in-plane anisotropy of CaNb_(2)O_(6)has still remained unexplored.Here,we leverage the resonant nanoelectromechanical systems(NEMS)platform to successfully quantify both the mechanical and thermal anisotropies in such an ultrathin WBG crystal.Specifically,by measuring the dynamic response in both spectral and spatial domains,we determine the anisotropic Young’s modulus of CaNb_(2)O_(6)as E_(Y(a))=70.42 GPa and EY(b)=116.2 GPa.By further expanding this technique to cryogenic temperatures,we unveil the anisotropy in thermal expansion coefficients as α_((a))=13.4 ppm·K^(-1),α(b)=2.9 ppm·K^(-1).Interestingly,through thermal strain engineering,we successfully modulate the mode sequence and achieve a crossing of(1×2)-(2×1)modes with perfect degeneracy.Our study provides guidelines for future CaNb_(2)O_(6)nanodevices with additional degrees of freedom and new device functions.
基金supported by the National Natural Science Foundation of China(Grant No.52175552)the National Key RD Program of China(Grant Nos.2022YFB3205400 and 2022YFB3204300).
文摘Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of most topology-optimized silicon–air 2D PnC slabs face significant fabrication challenges owing to restricted etching precision,and the anisotropic nature of silicon is frequently overlooked.To address these issues,this study employs the finite element method with appropriate discretization numbers and the genetic algorithm to optimize the structures and geometries of 2D silicon–air PnC slabs.The optimized square-lattice PnC slabs,featuring a rounded-cross structure oriented along the`110e directions of silicon,achieve an impressive relative bandgap(RBG)width of 82.2%for in-plane modes.When further tilted by 15° from the (100) directions within the(001)plane,the optimal RBG width is expanded to 91.4%.We fabricate and characterize thin-film piezoelectric-on-silicon LVRs,with or without optimized 2D PnC slabs.The presence of PnC slabs around anchors increases the series and parallel quality factors Q_(s) and Q_(p) from 2240 to 7118 and from 2237 to 7501,respectively,with the PnC slabs oriented along the`110e directions of silicon.
基金Project supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)the National Natural Science Foundation of China(Grant No.62105366)。
文摘Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optimized for a single specific function,limiting their versatility in multifunctional applications.In this work,we propose a reconfigurable microring resonator architecture designed to accommodate diverse application requirements.By integrating a cascaded Mach–Zehnder interferometer(MZI)as the microring coupler,the design enables independent control of the quality factors for pump,signal and idler photons through two tunable phase shifters.This capability allows for dynamic tuning and optimization of critical performance parameters,including photon-pair generation rate(PGR),spectral purity and single photon heralding efficiency(HE).The proposed structure is implemented on a silicon photonic chip,and experimental results exhibit a wide range of tunability for these parameters,with excellent agreement with theoretical predictions.This flexible and multi-functional design offers a promising pathway for high-performance,highly integrated on-chip quantum information processing systems.
基金supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12202355,12132013,and 12172323)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.
基金supported by Natural Science Foundation of Gansu Province(NO.21JR7RA289)。
文摘To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential.
基金supported by the National Natural Science Foundation of China(No.61205062)the Scientific Research Project of Hubei Education Department(No.B2015191)the Project of Hubei Province Universities Outstanding Youth Scientific Innovation Team(Nos.T201431 and T201633)
文摘The rectangular optical filter is one of the most important optical switching components in the dense wavelength divi- sion multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated high- order silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum re- sponse. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on high- order MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 pm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.
基金Project(61104088)supported by the National Natural Science Foundation of ChinaProject(12C0741)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.
基金supported by the National Natural Science Foundation of China(12061131013,11972276,12172171 and 12102183)the Fundamental Research Funds for the Central Universities(NE2020002 andNS2022011)+5 种基金JiangsuHigh-Level Innovative and Entrepreneurial Talents Introduction Plan(Shuangchuang Doctor Program,JSSCBS20210166)the National Natural Science Foundation of Jiangsu Province(BK20211176)the State Key Laboratory of Mechanics and Control of Mechanical Structures at NUAA(No.MCMS-I-0522G01)Local Science andTechnologyDevelopment Fund ProjectsGuided by the CentralGovernment(2021Szvup061)the Opening Projects from the Key Laboratory of Impact and Safety Engineering of Ningbo University(CJ202104)a project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘During the fabrication of quartz crystal resonators(QCRs),parallelism error is inevitably generated,which is rarely investigated.In order to reveal the influence of parallelism error on the working performance of QCRs,the coupled vibration of a non-parallel AT-cut quartz crystal plate with electrodes is systematically studied from the views of theoretical analysis and numerical simulations.The two-dimensional thermal incremental field equations are solved for the free vibration analysis via the coefficient-formed partial differential equation module of the COMSOL Multiphysics software,from which the frequency spectra,frequency–temperature curves,and mode shapes are discussed in detail.Additionally,the piezoelectric module is utilized to obtain the admittance response under different conditions.It is demonstrated that the parallelism error reduces the resonant frequency.Additionally,symmetry broken by the non-parallelism increases the probability of activity dip and is harmful to QCR’s thermal stability.However,if the top and bottom surfaces incline synchronously in the same direction,the influence of parallelism error is tiny.The conclusions achieved are helpful for the QCR design,and the methodology presented can also be applied to other wave devices.
基金supported by the National Natural Science Foundation of China(Grant No.61275081)
文摘Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of the film bulk acoustic resonator (FBARs). This model provides results of FBAR excited thickness-extensional and flexure modes, and the result of frequency dispersion is proposed in which the thicknesses and impedance of the electrodes and the piezoelectric material are taken into consideration; its further simplification shows good agreement with the modified Butterworth-Van-Dyke (MBVD) model. The displacement profile reflects the vibration stress distribution of electrode shapes and the lateral resonance effect, which depends on the axis ratio of the electrode shapes a/b. The results are consistent with the 3D finite element method modeling and laser interferometry measurement in general.
文摘We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dualchannel equalization,both based on high-Q integrated ring resonators.The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies.They operate via TE/TM mode birefringence in the resonator.We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.
基金the National Natural Science Foundation of China(No.61574093)the National Key Laboratory of Science and Technology on Nano/Micro Fabrication(No.614280504010317)+1 种基金the Aerospace Science and Technology Innovation Fund(No.16GFZJJ01-309),the Space Advanced Technology Joint Research Innovation Fund(No.USCAST2016-5)the Professional Technical Service Platform of Shanghai(No.19DZ2291103)。
文摘Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation.Several energy dissipation mechanisms limit Q,where thermoelastic dissipation (TED) is the major one and studied in this paper.Fully coupled thermo-mechanical equations for calculating TED are formulated,and then temperature distribution in a deformed μHSR and its quality factor related to TED (QTED) are obtained by solving the equations through a finite-element method (FEM).It has been found that different fabrication process conditions can obtain various geometrical parameters in our previous studies.In order to provide guidelines for the design and fabrication of μHSRs,the effects of their geometry on resonant frequency (f0) and QTED are studied.The change of anchor height and small enough anchor radius have no effect on both f0 and QTED,but the shell size including its radius,thickness and height has significant impact on f0 and QTED.It is found that whether a μHSR has lower f0 and higher QTED or higher f0 and higher QTED can be achieved by changing these geometrical parameters.The results presented in this paper can also be applied to other similar resonators.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA04Z301)
文摘Diffraction effects will bring about more difficulties in actuating resonators,which are electrostatically actuated ones with sub-micrometer or nanometer dimensions,and in detecting the frequency of the resonator by optical detection.To avoid the effects of diffraction,a new type of nanoelectromechanical systems(NEMS) resonators is fabricated and actuated to oscillate.As a comparison,a doubly clamped silicon beam is also fabricated and studied.The smallest width and thickness of the resonators are 180 and 200 nm,respectively.The mechanical oscillation responses of these two kinds of resonators are studied experimentally.Results show that the resonant frequencies are from 6.8 to 20 MHz,much lower than the theoretical values.Based on the simulation,it is found that over-etching is one of the important factors which results in lower frequencies than the theoretical values.It is also found that the difference between resonance frequencies of two types of resonators decreases with the increase in beam length.The quality factor is improved greatly by lowering the pressure in the sample chamber at room temperature.
文摘The mode frequencies and the quality factors for the equilateral triangular resonator (ETR), the square resonator (SR) and the rhombus resonator (RR) are numerically calculated by the finite difference time domain technique and the Padé approximation. The numerical results show that the resonant modes confined in an equilateral triangular cavity have much higher quality factors than those in the square or the rhombus cavities. The modes in the ETR are totally confined in transverse direction while those in the SR and RR are only partly confined. For the ETR with the side length of 4μm and the refractive index of 3 2, the mode quality factor of about 5 5×10 3 at the wavelength of 1 55μm has been obtained.
基金the National Key Research and Development Program of China(Grant Nos.2019YFA0308700and 2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.11627810 and 11690031)the Open Funds from the State Key Laboratory of High Performance Computing of China(HPCL,National University of Defense Technology).
文摘We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is continuously adjustable whose quality factor varies from 7.9×10^(4) to 1.9×10^(5) with the extinction ratio keeping higher than 25 dB.Also a variety of coupling spanning from"under-coupling"to"over-coupling"were achieved,showing the ability to tune the quality factor from 6.0×10^(3) to 2.3×10^(5).Our design can provide an adjustable filtering method on silicon nitride photonic chip and contribute to optimize the nonlinear process for quantum photonics and all-optical signal processing.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339800)the National Natural Science Foundation of China(Grant Nos.11374358 and 61077082)
文摘Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magne- toelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.
基金Supports from National Natural Science Foundation of China(Grant No.12002160,and Grant No.11972184)China National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(Grant No.6142902200203)+2 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200412,BK20201286)National Defense Basic Scientific Research Program of China(TCA20030)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)。
文摘Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and shock hazards.Single-spring-mass resonators and dual-spring-mass resonators were designed and made using lead or aluminum blocks and SWPB springs encased by PMMA(polymethyl methacrylate)or aluminum frames.These resonators were placed into mortar blocks to make metamortar specimens.Vibration attenuation effect was investigated by sweeping vibration with frequency from 50 Hz to 2000 Hz.All these meta-mortar blocks exhibit excellent vibration attenuation ability in the designed band gaps.With dual-spring-mass resonators,meta-mortar blocks have two distinct vibration attenuation bands.
基金Human Provincial Natural Science Foudation of China(No.2016JJ4043)Youth Foundation of Education Bureau of Hunan Province,China(No.16B137)Science and Technology Projects of Loudi City,China
文摘The optimization method by adjusting load and distances between two adjacent coils( or resonators) is presented on basis of wireless power transfer( WPT) system with relay resonators. 2-port network and impedance matching theory are applied to analyzing power flow of incidence and reflection in WPT system,then setting up power flow model. The maximum power transmission efficiency can be obtained when the load and distance between secondary resonator and output coil meets impedance matching at 2-port network's output port. The simulation and experimental results shown the impedance matching method can effectively improve and maintain transmission efficiency by adjusting load and distances between coils or relay resonators.
基金Project supported by the Doctoral Program of Guangdong Natural Science Foundation,China(Grant No.2018A030310109)the Doctoral Project of Guangdong Medical University(Grant No.B2017019)the Project of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education of China(Grant No.QSQC1808)。
文摘We investigate properties of the ponderomotive squeezing in an optomechanical system with two coupled resonators,where the tunable two-mode squeezing spectrum can be observed from the output field.It is realized that the squeezing orientation can be controlled by the detuning between the left cavity and pump laser.Especially,both cavity decay and environment temperature play a positive role in generating better pondermotive squeezing light.Strong squeezing spectra with a wide squeezing frequency range can be obtained by appropriate choice of parameters present in our optomechanical system.