The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the r...The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the railway power supply system.To address these challenges,this paper proposes a novel harmonic resonance prevention measure for RPC-network-train interaction system.Firstly,a harmonic model,a parallel resonance impedance model,a series resonance admittance model,and a control stability model are each established for the RPC-network-train interaction system.Secondly,a comprehensive resonance impact factor(CRIF)is proposed to efficiently and accurately identify the key components affecting resonance,and to provide the selection results of optimization parameters for resonance prevention.Next,the initially selected parameters are constrained by the requirements of ripple current,reactive power and stability.Subsequently,the impedance parameters(control parameters and filter parameters)of the RPC are optimized with the objective of reshaping the parallel resonance impedance and series resonance admittance of the RPC-network-train interaction system,ensuring the output current har-monics of RPC meet standards to achieve resonance prevention,while ensuring the stable operation of the RPC.Finally,the proposed resonance prevention measure is verified under both light load and heavy load conditions using a simulation platform and a hardware-in-the-loop experimental platform.展开更多
A D-type photonic crystal fiber(PCF) sensor based on surface plasmon resonance(SPR) principle is designed.In order to excite the SPR effect,a gold film is plated on the open-loop channel of the sensor,the free electro...A D-type photonic crystal fiber(PCF) sensor based on surface plasmon resonance(SPR) principle is designed.In order to excite the SPR effect,a gold film is plated on the open-loop channel of the sensor,the free electrons in a metal are resonated with photons.The structural parameters are fine-tuned and the sensing performance of the sensor is studied.The results show that the maximum spectral sensitivity reaches 18 000 nm/RIU in the refractive index range of 1.24—1.32,and the maximum resolution is 5.56×10^(-6) RIU.The novel structure with high sensitivity and low refractive index provides a new perspective for fluid density detection.展开更多
Renal cell carcinoma(RCC)is an aggressive tumor known for its propensity to invade the inferior vena cava(IVC)into the heart.Cardiac metastasis of RCC without IVC involvement is rare.Even rarer is ventricular arrhythm...Renal cell carcinoma(RCC)is an aggressive tumor known for its propensity to invade the inferior vena cava(IVC)into the heart.Cardiac metastasis of RCC without IVC involvement is rare.Even rarer is ventricular arrhythmia as the primary manifestation of cardiac metastasis of RCC with only two cases reported.[1,2]We add to the literature the third case,the diagnosis of which was only possible with cardiac magnetic resonance(CMR).展开更多
Magnetic resonance enterography(MRE)is a non-invasive,radiation-free imaging modality that facilitates the assessment of transmural Crohn’s disease activity.It offers advantages over ileo-colonoscopy,which is limited...Magnetic resonance enterography(MRE)is a non-invasive,radiation-free imaging modality that facilitates the assessment of transmural Crohn’s disease activity.It offers advantages over ileo-colonoscopy,which is limited to mucosal-level evaluation,cannot routinely assess small bowel segments proximal to the terminal ileum,and is unable to detect extra-luminal complications.Despite these ad-vantages,the lack of standardised criteria for defining and appraising radiologic disease activity on MRE has contributed to variability in interpretation and clinical application.In response,multiple MRE-based scoring systems have been developed to quantify radiological Crohn’s disease activity in both luminal and post-operative settings.Radiological disease activity scores specific to luminal Crohn’s disease include the magnetic resonance index of activity(MaRIA),simplified MaRIA,Nancy score,London score,Crohn’s disease magnetic reso-nance imaging(MRI)index,Clermont score,paediatric inflammatory Crohn’s MRE index,MRE global score,MRE index,and modified Clermont score.The MR score and the MRI in Crohn’s disease to predict postoperative recurrence index have been specifically developed to evaluate post-operative disease recurrence in Crohn’s disease.Nevertheless,heterogeneity in scoring parameters,variability in computational complexity,and a lack of consensus regarding optimal score selection,have impeded widespread clinical adoption of radiological disease activity scores.This narrative review aims to summarise the key imaging features of luminal Crohn’s disease,explore their integration into existing MRE scoring indices,and critically compare the structure,strengths,and clinical applicability of each.Furthermore,MRI scores specific to post-operative Crohn’s disease evaluation,and the assessment of cumulative bowel wall damage using the Lemann index will also be discussed.展开更多
Visual assessment of tumor metastatic capacity is crucial for predicting hepatocellular carcinoma(HCC)prognosis and guiding clinical therapeutic approaches.In this study,we developed an enzyme-responsive probe based o...Visual assessment of tumor metastatic capacity is crucial for predicting hepatocellular carcinoma(HCC)prognosis and guiding clinical therapeutic approaches.In this study,we developed an enzyme-responsive probe based on the peptide GK10,which is selectively cleaved by matrix metalloproteinase-9(MMP-9),a critical marker for metastasis in HCC.The GK10 peptide was conjugated with near-infrared fiuorescent molecule IR783,fiuorescent quencher black hole quencher 3(BHQ3),and magnetic resonance(MR)contrast agent DOTA-Gd,forming the IR783-GK10-BHQ3-Gd probe.Upon MMP-9 cleavage of GK10,BHQ3 is released from the probe,thereby amplifying the previously quenched IR783 fiuorescence signal.In vitro experiments demonstrate the probe's impressive detection limit for MMP-9,as low as 1.84 ng/m L.Moreover,in vivo imaging results reveal that the probe can differentiate liver cancers with varying metastatic capacities.The fiuorescence and MR imaging signal intensity of high metastatic HCC are approximately1.2 times greater than that of low metastatic HCC.Thus,this engineered probe holds promise as a valuable tool for evaluating HCC metastatic capacity through fiuorescence-MR dual-mode imaging.展开更多
Fetal intracranial tumors are rare,accounting for approximately 0.5%–1.9%of all pediatric tumors,though the true incidence may be underestimated.These tumors often present with distinct histopathological features,ima...Fetal intracranial tumors are rare,accounting for approximately 0.5%–1.9%of all pediatric tumors,though the true incidence may be underestimated.These tumors often present with distinct histopathological features,imaging characteristics,and clinical behavior compared to their postnatal counterparts.This review summarizes the current understanding of the prenatal diagnosis and characterization of fetal brain tumors,with a particular focus on the role of fetal magnetic resonance imaging(MRI).We discuss the advantages of advanced MR sequences in enhancing lesion detection and anatomical delineation following suspicious findings on obstetric ultrasound.Common tumor types encountered in utero—including teratomas,as-trocytomas,medulloblastomas,choroid plexus papillomas,and craniopharyngiomas—are reviewed in terms of imaging fea-tures,differential diagnosis,and clinical implications.Furthermore,the review addresses the diagnostic challenges,prognostic considerations,and the potential role of fetal MRI in guiding perinatal management and parental counseling.展开更多
Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnos...Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment.展开更多
BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the cor...BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the correlation between preoperative MRI features and the risk of recurrence after radical resection of RC,urgently necessitating further in-depth exploration.AIM To investigate the correlation between preoperative MRI parameters and the risk of recurrence after radical resection of RC to provide an effective tool for predicting postoperative recurrence.METHODS The data of 90 patients who were diagnosed with RC by surgical pathology and underwent radical surgical resection at the Second Affiliated Hospital of Bengbu Medical University between May 2020 and December 2023 were collected through retrospective analysis.General demographic data,MRI data,and tumor markers levels were collected.According to the reviewed data of patients six months after surgery,the clinicians comprehensively assessed the recurrence risk and divided the patients into high recurrence risk(37 cases)and low recurrence risk(53 cases)groups.Independent sample t-test andχ2 test were used to analyze differences between the two groups.A logistic regression model was used to explore the risk factors of the high recurrence risk group,and a clinical prediction model was constructed.The clinical prediction model is presented in the form of a nomogram.The receiver operating characteristic curve,Hosmer-Lemeshow goodness of fit test,calibration curve,and decision curve analysis were used to evaluate the efficacy of the clinical prediction model.RESULTS The detection of positive extramural vascular invasion through preoperative MRI[odds ratio(OR)=4.29,P=0.045],along with elevated carcinoembryonic antigen(OR=1.08,P=0.041),carbohydrate antigen 125(OR=1.19,P=0.034),and carbohydrate antigen 199(OR=1.27,P<0.001)levels,are independent risk factors for increased postoperative recurrence risk in patients with RC.Furthermore,there was a correlation between magnetic resonance based T staging,magnetic resonance based N staging,and circumferential resection margin results determined by MRI and the postoperative recurrence risk.Additionally,when extramural vascular invasion was integrated with tumor markers,the resulting clinical prediction model more effectively identified patients at high risk for postoperative recurrence,thereby providing robust support for clinical decision-making.CONCLUSION The results of this study indicate that preoperative MRI detection is of great importance for predicting the risk of postoperative recurrence in patients with RC.Monitoring these markers helps clinicians identify patients at high risk,allowing for more aggressive treatment and monitoring strategies to improve patient outcomes.展开更多
Angiomyolipomas(AMLs)represent the most common benign solid renal tumors.The frequency of their detection in the general population is increasing owing to advances in imaging technology.The objective of this review is...Angiomyolipomas(AMLs)represent the most common benign solid renal tumors.The frequency of their detection in the general population is increasing owing to advances in imaging technology.The objective of this review is to discuss computed tomography(CT)and magnetic resonance imaging findings for both typical and atypical renal AMLs,along with their associated complications.AMLs are typically defined as solid triphasic tumors composed of varying amounts of dysmorphic and tortuous blood vessels,smooth muscle components and adipose tissue.In an adult,a classical renal AML appears as a solid,heterogeneous renal cortical mass with macroscopic fat.However,up to 5%of AMLs contain minimal fat and cannot be reliably diagnosed by imaging.Fat-poor AMLs can appear as hyperattenuating masses on unenhanced CT and as hypointense masses on T2WI;other AMLs may be isodense or exhibit cystic components.Hemorrhage is the most common complication,and AMLs with hemorrhage can mimic other tumors,making their diagnosis challenging.Understanding the variable and heterogeneous nature of this neoplasm to correctly classify renal AMLs and to avoid misdiagnosis of other renal lesions is crucial.展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
Background:Congenital hepatic hemangioma(CHH)is a rare benign vascular tumor that occurs prenatally.However,only a few cases have been summarized and evaluated for the prenatal and postnatal imaging features of CHH,an...Background:Congenital hepatic hemangioma(CHH)is a rare benign vascular tumor that occurs prenatally.However,only a few cases have been summarized and evaluated for the prenatal and postnatal imaging features of CHH,and no studies have conducted long-term follow-up on it.This study aimed to explore the ultrasound and magnetic resonance features,growth patterns,and clinical outcomes of CHH.Methods:Thirty-six pregnancies with a prenatal fetal diagnosis and postnatal diagnosis of CHH were studied.CHHs were grouped into those with a diameter≥4 cm and those with a diameter<4 cm according to the largest diameter.Fisher's exact test was used to compare the imaging characteristics between the groups.The volume of CHHs was measured at each follow-up visit to plot the growth pattern of the tumors,and the volume of CHHs was compared before and after birth using a rank sum test analysis.Results:Thirty-three cases of CHHs were confirmed by postnatal imaging,and three were confirmed by a biopsy.Mixed echoes were more common in the diameter≥4 cm group than in the diameter<4 cm group(p=0.026).Complications were more likely to occur in the large-diameter group.Eighteen(54.5%)cases were classified as rapidly involuting congenital hemangioma,nine(27.3%)as partially involuting congenital hemangioma,and two(6.1%)as noninvoluting congenital hemangioma.A new type of CHH was identified in which four(12.1%)cases continued to proliferate after birth and spontaneously subsided in subsequent months.The CHH volume decreased with age and was significantly decreased at 9 months postnatal compared to birth(p=0.001).Conclusion:This study showed the imaging features of CHH were associated with the lesion size.Based on postnatal follow-up,a new type of CHH was identified.If there are no complications at birth in CHH cases,a good prognosis is indicated.展开更多
BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evalu...BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm^(3))being significantly lower than before correction(825.632 cm^(3),P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm^(3) as the cutoff,the group with baseline ETV<415 cm^(3) had a longer median survival time compared to the≥415 cm^(3) group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies.展开更多
The neutron capture resonance parameters for 159Tb are crucial for validating nuclear models,nucleosynthesis during the neutron capture process,and nuclear technology applications.In this study,resonance analyses were...The neutron capture resonance parameters for 159Tb are crucial for validating nuclear models,nucleosynthesis during the neutron capture process,and nuclear technology applications.In this study,resonance analyses were performed for the neutron capture cross sections of 159Tb measured at the China Spallation Neutron Source(CSNS)backscattering white neutron beamline(Back-n)facility.The resonance parameters were extracted from the R-Matrix code SAMMY and fitted to the experimental capture yield up to the 1.2 keV resolved resonance region(RRR).The average resonance parameters were determined by performing statistical analysis on the set of the resonance parameters in the RRR.These results were used to fit the measured average capture cross sections using the FITACS code in the unresolved resonance region from 2 keV to 1 MeV.The contributions of partial waves l=0,1,2 to the average capture cross sections are reported.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s...Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.展开更多
BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study...BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.展开更多
Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to...Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.展开更多
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme...Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.展开更多
A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refracti...A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.52277126.
文摘The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the railway power supply system.To address these challenges,this paper proposes a novel harmonic resonance prevention measure for RPC-network-train interaction system.Firstly,a harmonic model,a parallel resonance impedance model,a series resonance admittance model,and a control stability model are each established for the RPC-network-train interaction system.Secondly,a comprehensive resonance impact factor(CRIF)is proposed to efficiently and accurately identify the key components affecting resonance,and to provide the selection results of optimization parameters for resonance prevention.Next,the initially selected parameters are constrained by the requirements of ripple current,reactive power and stability.Subsequently,the impedance parameters(control parameters and filter parameters)of the RPC are optimized with the objective of reshaping the parallel resonance impedance and series resonance admittance of the RPC-network-train interaction system,ensuring the output current har-monics of RPC meet standards to achieve resonance prevention,while ensuring the stable operation of the RPC.Finally,the proposed resonance prevention measure is verified under both light load and heavy load conditions using a simulation platform and a hardware-in-the-loop experimental platform.
基金supported by the Natural Science Foundation of Tianjin City (No.19JCYBJC17000)the National Natural Science Foundation of China (No.11905159)。
文摘A D-type photonic crystal fiber(PCF) sensor based on surface plasmon resonance(SPR) principle is designed.In order to excite the SPR effect,a gold film is plated on the open-loop channel of the sensor,the free electrons in a metal are resonated with photons.The structural parameters are fine-tuned and the sensing performance of the sensor is studied.The results show that the maximum spectral sensitivity reaches 18 000 nm/RIU in the refractive index range of 1.24—1.32,and the maximum resolution is 5.56×10^(-6) RIU.The novel structure with high sensitivity and low refractive index provides a new perspective for fluid density detection.
文摘Renal cell carcinoma(RCC)is an aggressive tumor known for its propensity to invade the inferior vena cava(IVC)into the heart.Cardiac metastasis of RCC without IVC involvement is rare.Even rarer is ventricular arrhythmia as the primary manifestation of cardiac metastasis of RCC with only two cases reported.[1,2]We add to the literature the third case,the diagnosis of which was only possible with cardiac magnetic resonance(CMR).
文摘Magnetic resonance enterography(MRE)is a non-invasive,radiation-free imaging modality that facilitates the assessment of transmural Crohn’s disease activity.It offers advantages over ileo-colonoscopy,which is limited to mucosal-level evaluation,cannot routinely assess small bowel segments proximal to the terminal ileum,and is unable to detect extra-luminal complications.Despite these ad-vantages,the lack of standardised criteria for defining and appraising radiologic disease activity on MRE has contributed to variability in interpretation and clinical application.In response,multiple MRE-based scoring systems have been developed to quantify radiological Crohn’s disease activity in both luminal and post-operative settings.Radiological disease activity scores specific to luminal Crohn’s disease include the magnetic resonance index of activity(MaRIA),simplified MaRIA,Nancy score,London score,Crohn’s disease magnetic reso-nance imaging(MRI)index,Clermont score,paediatric inflammatory Crohn’s MRE index,MRE global score,MRE index,and modified Clermont score.The MR score and the MRI in Crohn’s disease to predict postoperative recurrence index have been specifically developed to evaluate post-operative disease recurrence in Crohn’s disease.Nevertheless,heterogeneity in scoring parameters,variability in computational complexity,and a lack of consensus regarding optimal score selection,have impeded widespread clinical adoption of radiological disease activity scores.This narrative review aims to summarise the key imaging features of luminal Crohn’s disease,explore their integration into existing MRE scoring indices,and critically compare the structure,strengths,and clinical applicability of each.Furthermore,MRI scores specific to post-operative Crohn’s disease evaluation,and the assessment of cumulative bowel wall damage using the Lemann index will also be discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.32025021,31971292,32111540257)the Zhejiang Province Financial Supporting(Nos.2020C03110 and 2023C04017)the Key Scientific and Technological Special Project of Ningbo City(No.2020Z094)。
文摘Visual assessment of tumor metastatic capacity is crucial for predicting hepatocellular carcinoma(HCC)prognosis and guiding clinical therapeutic approaches.In this study,we developed an enzyme-responsive probe based on the peptide GK10,which is selectively cleaved by matrix metalloproteinase-9(MMP-9),a critical marker for metastasis in HCC.The GK10 peptide was conjugated with near-infrared fiuorescent molecule IR783,fiuorescent quencher black hole quencher 3(BHQ3),and magnetic resonance(MR)contrast agent DOTA-Gd,forming the IR783-GK10-BHQ3-Gd probe.Upon MMP-9 cleavage of GK10,BHQ3 is released from the probe,thereby amplifying the previously quenched IR783 fiuorescence signal.In vitro experiments demonstrate the probe's impressive detection limit for MMP-9,as low as 1.84 ng/m L.Moreover,in vivo imaging results reveal that the probe can differentiate liver cancers with varying metastatic capacities.The fiuorescence and MR imaging signal intensity of high metastatic HCC are approximately1.2 times greater than that of low metastatic HCC.Thus,this engineered probe holds promise as a valuable tool for evaluating HCC metastatic capacity through fiuorescence-MR dual-mode imaging.
基金supported by the Medical Innovation Research Special Project of Science and Technology Commission of Shanghai Municipality(Grant/Award Number:23Y11907800)Fundamental Research Funds for the Central Universities(Grant/Award Number:YG2023ZD22)Shanghai Key Laboratory of Child Brain and Development(Grant/Award Number:24dz2260100).
文摘Fetal intracranial tumors are rare,accounting for approximately 0.5%–1.9%of all pediatric tumors,though the true incidence may be underestimated.These tumors often present with distinct histopathological features,imaging characteristics,and clinical behavior compared to their postnatal counterparts.This review summarizes the current understanding of the prenatal diagnosis and characterization of fetal brain tumors,with a particular focus on the role of fetal magnetic resonance imaging(MRI).We discuss the advantages of advanced MR sequences in enhancing lesion detection and anatomical delineation following suspicious findings on obstetric ultrasound.Common tumor types encountered in utero—including teratomas,as-trocytomas,medulloblastomas,choroid plexus papillomas,and craniopharyngiomas—are reviewed in terms of imaging fea-tures,differential diagnosis,and clinical implications.Furthermore,the review addresses the diagnostic challenges,prognostic considerations,and the potential role of fetal MRI in guiding perinatal management and parental counseling.
基金supported by China Society for Maternal and Child Health Research(Gant/Award Number:2023CAMCHS003A17).
文摘Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment.
文摘BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the correlation between preoperative MRI features and the risk of recurrence after radical resection of RC,urgently necessitating further in-depth exploration.AIM To investigate the correlation between preoperative MRI parameters and the risk of recurrence after radical resection of RC to provide an effective tool for predicting postoperative recurrence.METHODS The data of 90 patients who were diagnosed with RC by surgical pathology and underwent radical surgical resection at the Second Affiliated Hospital of Bengbu Medical University between May 2020 and December 2023 were collected through retrospective analysis.General demographic data,MRI data,and tumor markers levels were collected.According to the reviewed data of patients six months after surgery,the clinicians comprehensively assessed the recurrence risk and divided the patients into high recurrence risk(37 cases)and low recurrence risk(53 cases)groups.Independent sample t-test andχ2 test were used to analyze differences between the two groups.A logistic regression model was used to explore the risk factors of the high recurrence risk group,and a clinical prediction model was constructed.The clinical prediction model is presented in the form of a nomogram.The receiver operating characteristic curve,Hosmer-Lemeshow goodness of fit test,calibration curve,and decision curve analysis were used to evaluate the efficacy of the clinical prediction model.RESULTS The detection of positive extramural vascular invasion through preoperative MRI[odds ratio(OR)=4.29,P=0.045],along with elevated carcinoembryonic antigen(OR=1.08,P=0.041),carbohydrate antigen 125(OR=1.19,P=0.034),and carbohydrate antigen 199(OR=1.27,P<0.001)levels,are independent risk factors for increased postoperative recurrence risk in patients with RC.Furthermore,there was a correlation between magnetic resonance based T staging,magnetic resonance based N staging,and circumferential resection margin results determined by MRI and the postoperative recurrence risk.Additionally,when extramural vascular invasion was integrated with tumor markers,the resulting clinical prediction model more effectively identified patients at high risk for postoperative recurrence,thereby providing robust support for clinical decision-making.CONCLUSION The results of this study indicate that preoperative MRI detection is of great importance for predicting the risk of postoperative recurrence in patients with RC.Monitoring these markers helps clinicians identify patients at high risk,allowing for more aggressive treatment and monitoring strategies to improve patient outcomes.
文摘Angiomyolipomas(AMLs)represent the most common benign solid renal tumors.The frequency of their detection in the general population is increasing owing to advances in imaging technology.The objective of this review is to discuss computed tomography(CT)and magnetic resonance imaging findings for both typical and atypical renal AMLs,along with their associated complications.AMLs are typically defined as solid triphasic tumors composed of varying amounts of dysmorphic and tortuous blood vessels,smooth muscle components and adipose tissue.In an adult,a classical renal AML appears as a solid,heterogeneous renal cortical mass with macroscopic fat.However,up to 5%of AMLs contain minimal fat and cannot be reliably diagnosed by imaging.Fat-poor AMLs can appear as hyperattenuating masses on unenhanced CT and as hypointense masses on T2WI;other AMLs may be isodense or exhibit cystic components.Hemorrhage is the most common complication,and AMLs with hemorrhage can mimic other tumors,making their diagnosis challenging.Understanding the variable and heterogeneous nature of this neoplasm to correctly classify renal AMLs and to avoid misdiagnosis of other renal lesions is crucial.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
文摘Background:Congenital hepatic hemangioma(CHH)is a rare benign vascular tumor that occurs prenatally.However,only a few cases have been summarized and evaluated for the prenatal and postnatal imaging features of CHH,and no studies have conducted long-term follow-up on it.This study aimed to explore the ultrasound and magnetic resonance features,growth patterns,and clinical outcomes of CHH.Methods:Thirty-six pregnancies with a prenatal fetal diagnosis and postnatal diagnosis of CHH were studied.CHHs were grouped into those with a diameter≥4 cm and those with a diameter<4 cm according to the largest diameter.Fisher's exact test was used to compare the imaging characteristics between the groups.The volume of CHHs was measured at each follow-up visit to plot the growth pattern of the tumors,and the volume of CHHs was compared before and after birth using a rank sum test analysis.Results:Thirty-three cases of CHHs were confirmed by postnatal imaging,and three were confirmed by a biopsy.Mixed echoes were more common in the diameter≥4 cm group than in the diameter<4 cm group(p=0.026).Complications were more likely to occur in the large-diameter group.Eighteen(54.5%)cases were classified as rapidly involuting congenital hemangioma,nine(27.3%)as partially involuting congenital hemangioma,and two(6.1%)as noninvoluting congenital hemangioma.A new type of CHH was identified in which four(12.1%)cases continued to proliferate after birth and spontaneously subsided in subsequent months.The CHH volume decreased with age and was significantly decreased at 9 months postnatal compared to birth(p=0.001).Conclusion:This study showed the imaging features of CHH were associated with the lesion size.Based on postnatal follow-up,a new type of CHH was identified.If there are no complications at birth in CHH cases,a good prognosis is indicated.
文摘BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm^(3))being significantly lower than before correction(825.632 cm^(3),P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm^(3) as the cutoff,the group with baseline ETV<415 cm^(3) had a longer median survival time compared to the≥415 cm^(3) group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies.
基金supported by the National Natural Science Foundation of China(Nos.12365018,U2032146,12465024)Natural Science Foundation of Inner Mongolia(Nos.2023MS01005,2024ZD23,2024FX30)the program of Innovative Research Team and Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Nos.NMGIRT2217,NJYT23109)。
文摘The neutron capture resonance parameters for 159Tb are crucial for validating nuclear models,nucleosynthesis during the neutron capture process,and nuclear technology applications.In this study,resonance analyses were performed for the neutron capture cross sections of 159Tb measured at the China Spallation Neutron Source(CSNS)backscattering white neutron beamline(Back-n)facility.The resonance parameters were extracted from the R-Matrix code SAMMY and fitted to the experimental capture yield up to the 1.2 keV resolved resonance region(RRR).The average resonance parameters were determined by performing statistical analysis on the set of the resonance parameters in the RRR.These results were used to fit the measured average capture cross sections using the FITACS code in the unresolved resonance region from 2 keV to 1 MeV.The contributions of partial waves l=0,1,2 to the average capture cross sections are reported.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
文摘Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.
文摘BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.
文摘Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.
基金Supported by Natural Science Foundation of Shanghai,No.17ZR1431400National Key R and D Program of China,No.2017YFA0103902.
文摘Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.
文摘A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications.