期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of Film Thickness and Ar/O2 Ratio on Resistive Switching Characteristics of HfOx-Based Resistive-Switching Random Access Memories
1
作者 郭婷婷 谭婷婷 刘正堂 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期125-128,共4页
Cu/HfOx/n^+Si devices are fabricated to investigate the influence of technological parameters including film thickness and Ar/02 ratio on the resistive switching (RS) characteristics of HfOx films, in terms of swit... Cu/HfOx/n^+Si devices are fabricated to investigate the influence of technological parameters including film thickness and Ar/02 ratio on the resistive switching (RS) characteristics of HfOx films, in terms of switch ratio, endurance properties, retention time and multilevel storage. It is revealed that the RS characteristics show strong dependence on technological parameters mainly by altering the defects (oxygen vacancies) in the film. The sample with thickness of 2Onto and Ar/O2 ratio of 12:3 exhibits the best RS behavior with the potential of multilevel storage. The conduction mechanism of all the films is interpreted based on the filamentary model. 展开更多
关键词 Effects of Film Thickness and Ar/O2 Ratio on Resistive Switching Characteristics of HfOx-Based resistive-switching Random Access Memories
原文传递
Resistive-switching tunability with size-dependent all-inorganic zero-dimensional tetrahedrite quantum dots
2
作者 Zhiqing Wang Yueli Liu +5 位作者 Jie Shen Wen Chen Jun Miao Ang Li Ke Liu Jing Zhou 《Science China Materials》 SCIE EI CSCD 2020年第12期2497-2508,共12页
All-inorganic zero-dimensional(0D)tetrahedrite(Cu12Sb4S13,CAS)quantum dots(QDs)have attracted extensive attention due to their excellent optical properties,bandgap tunability,and carrier mobility.In this paper,various... All-inorganic zero-dimensional(0D)tetrahedrite(Cu12Sb4S13,CAS)quantum dots(QDs)have attracted extensive attention due to their excellent optical properties,bandgap tunability,and carrier mobility.In this paper,various sized CAS QDs(5.1,6.7,and 7.9 nm)are applied as a switching layer with the structure F:Sn O2(FTO)/CAS QDs/Au,and in doing so,the nonvolatile resistive-switching behavior of electronics based on CAS QDs is reported.The SET/RESET voltage tunability with size dependency is observed for memory devices based on CAS QDs for the first time.Results suggest that differently sized CAS QDs result in different band structures and the regulation of the SET/RESET voltage occurs simply and effectively due to the uniform size of the CAS QDs.Moreover,the presented memory devices have reliable bipolar resistive-switching properties,a resistance(ON/OFF)ratio larger than 104,high reproducibility,and good data retention ability.After 1.4×10^6s of stability testing and 104cycles of quick read tests,the change rate of the ON/OFF ratio is smaller than 0.1%.Furthermore,resistiveswitching stability can be improved by ensuring a uniform particle size for the CAS QDs.The theoretical calculations suggest that the space-charge-limited currents(SCLCs),which are functioned by Cu 3d,Cu 3p and S 3p to act as electron selftrapping centers due to their quantum confinement and form conduction pathways under an electric field,are responsible for the resistive-switching effect.This paper demonstrates that CAS QDs are promising as a novel resistive-switching material in memory devices and can be used to facilitate the application of next-generation nonvolatile memory. 展开更多
关键词 memory device tetrahedrite quantum dots resistive-switching tunability resistance mechanism
原文传递
Advances in Schottky parameter extraction and applications
3
作者 Peihua Wangyang Xiaolin Huang +11 位作者 Xiao-Lei Shi Niuniu Zhang Yu Ye Shuangzhi Zhao Jiamin Zhang Yingbo Liu Fabi Zhang Xingpeng Liu Haiou Li Tangyou Sun Ying Peng Zhi-Gang Chen 《Journal of Materials Science & Technology》 2025年第15期317-335,共19页
Schottky contacts have attracted widespread attention from both the electronic device industry and researchers since their discovery.The Schottky characteristics make these contacts highly suitable for use in field-ef... Schottky contacts have attracted widespread attention from both the electronic device industry and researchers since their discovery.The Schottky characteristics make these contacts highly suitable for use in field-effect transistors(FETs),photodetectors(PDs),solar cells(SCs),resistive-switching memories(RSMs),thin-film transistors(TFTs),etc.However,how do Schottky contacts affect the device performance?The answer lies simply in the Schottky parameters.This review focuses on the extraction of Schottky parameters,i.e.,the Schottky barrier height(SBH),ideality factor(IF),and series resistance(SR),from the current-voltage(I−V)curve to understand and analyze the characteristics of Schottky devices.First,the current research progress in this field and the principles of Schottky contacts are presented.Second,this article delves into some classic and widely used extraction methods as well as the latest extraction methods,providing an objective evaluation based on their practical effectiveness.Then,several research applications,including studies that require extraction,simple extraction,and delicate extraction,are enumerated to demonstrate the necessity and importance of Schottky parameter analysis.Finally,an outlook and future research prospects are discussed based on recent progress,and a comprehensive summary is given. 展开更多
关键词 Schottky parameter extraction PHOTODETECTORS Solar cells resistive-switching memory Thin-film transistors
原文传递
Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
4
作者 Qi Qin Miaocheng Zhang +12 位作者 Suhao Yao Xingyu Chen Aoze Han Ziyang Chen Chenxi Ma Min Wang Xintong Chen Yu Wang Qiangqiang Zhang Xiaoyan Liu Ertao Hu Lei Wang Yi Tong 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期637-642,共6页
In the post-Moore era,neuromorphic computing has been mainly focused on breaking the von Neumann bottlenecks.Memristors have been proposed as a key part of neuromorphic computing architectures,and can be used to emula... In the post-Moore era,neuromorphic computing has been mainly focused on breaking the von Neumann bottlenecks.Memristors have been proposed as a key part of neuromorphic computing architectures,and can be used to emulate the synaptic plasticities of the human brain.Ferroelectric memristors represent a breakthrough for memristive devices on account of their reliable nonvolatile storage,low write/read latency and tunable conductive states.However,among the reported ferroelectric memristors,the mechanisms of resistive switching are still under debate.In addition,there needs to be more research on emulation of the brain synapses using ferroelectric memristors.Herein,Cu/PbZr_(0.52)Ti_(0.48)O_(3)(PZT)/Pt ferroelectric memristors have been fabricated.The devices are able to realize the transformation from threshold switching behavior to resistive switching behavior.The synaptic plasticities,including excitatory post-synaptic current,paired-pulse facilitation,paired-pulse depression and spike time-dependent plasticity,have been mimicked by the PZT devices.Furthermore,the mechanisms of PZT devices have been investigated by first-principles calculations based on the interface barrier and conductive filament models.This work may contribute to the application of ferroelectric memristors in neuromorphic computing systems. 展开更多
关键词 brain-inspired computing ferroelectric memristors mechanisms resistive-switching
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部