As artificial intelligence and big data become increasingly prevalent, resistive random-access memory (RRAM) has become one of the most promising alternatives for storing massive amounts of data. In this study, we emp...As artificial intelligence and big data become increasingly prevalent, resistive random-access memory (RRAM) has become one of the most promising alternatives for storing massive amounts of data. In this study, we employed high-quality crystalline TiN/Al_(2)O_(3)/BaTiO_(3)/Pt RRAM with an optimized thin Al_(2)O_(3) interlayer around 12 nm thick prepared using atomic layer deposition since the thickness of the interlayer affects the memory window size. After insertion of the Al_(2)O_(3) interlayer, the novel RRAM exhibited outstanding uniform resistive switching voltage and the ON/OFF memory window drastically increased from 10 to 103 without any discernible decline in performance. Moreover, the low-resistance state and high-resistance state operating current values decreased by almost one order and three orders of magnitude, respectively, thereby decreasing the power consumption for the RESET and SET processes by more than three and almost one order of magnitude, respectively. The device also exhibits multilevel resistive switching behavior when varying the applied voltage. Finally, we also developed a 6 6 crossbar array which demonstrated consistent and reliable resistive switching behavior with minimal variation. Hence, our approach holds great promise for producing state-of-the-art non-volatile resistive switching devices.展开更多
The exploratory synthesis and structural characterization of twodimensional(2D)honeycomb structured Ru-based compounds are key focuses in inorganic materials research,due to the various exotic electronic states arisin...The exploratory synthesis and structural characterization of twodimensional(2D)honeycomb structured Ru-based compounds are key focuses in inorganic materials research,due to the various exotic electronic states arising from the interplay of electron correlations and spinorbit coupling.Among these compounds,α-RuCl_(3) and RuBr_(3) are considered as the most promising candidates for quantum spin liquid(QSL)materials[1–3].As a homolog,α-RuI3 has attracted significant interest,but it still remains relatively unexplored.Recently,it was synthesized by high-temperature and high-pressure solid-state reaction,but reported to be different crystal structures by independent groups.Ni et al.and Nawa et al.considerα-RuI3 to be R-3(3R)and P-31c(2H)space group,respectively[4,5].Both structures have typical 2D characteristics,in which the edge-sharing RuI6 octahedra form honeycomb layers stacked along the c-axis.The primary difference lies in that the honeycomb layers stack in ABCABC mode in the 3R phase,while in ABAB mode in the 2H phase(Fig.S1).Yang et al.discussed the stability of 3R and 2H polymorphs in terms of the total energies and dynamics,finding both structures are stable.However,the total energy of the 2H phase is slightly higher,2.58 meV than that of the 3R analog[6].When it comes to the conductivity behaviour,α-RuCl3 andα-RuBr_(3) are semiconductors as normally observed in QSL materials.In contrast,α-RuI_(3) exhibits metallic response.In 2D materials,the band structure may be drastically modified by altering the stacking order[7].Hence,determining the crystal structure ofα-RuI_(3) is urgently required,which is a key step in comprehensive and in-depth analysis of its physical properties.展开更多
BACKGROUND Acute kidney injury(AKI)is a frequent complication after liver transplantation(LT).How to realize the early diagnosis of AKI,perform active intervention,and reduce the mortality of post-LT patients is an ur...BACKGROUND Acute kidney injury(AKI)is a frequent complication after liver transplantation(LT).How to realize the early diagnosis of AKI,perform active intervention,and reduce the mortality of post-LT patients is an urgent problem to be solved.AIM To investigate the accuracy of hepatorenal index(HRI)and renal resistive index(RRI)in monitoring of early AKI after LT.METHODS This observational study included adult deceased-donor LT recipients at our center between February 2022 and February 2023 with no preoperative renal dysfunction.The HRI and RRI were recorded once per day in the postoperative period through to postoperative day(POD)7.We followed up with the patients at 1 month after LT.The patients were divided into the AKI and non-AKI groups according to the Kidney Disease Improving Global Outcomes criteria.RESULTS Of 121 patients were included in the study(mean age:50.18±8.88years;female:17.36%).AKI developed in 53 patients(43.80%).The AKI and non-AKI groups were similar in terms of their baseline characteristics.An HRI of≤1.12 on POD 1 detected AKI with a sensitivity of 62.30%and a specificity of 87.80%[area under the receiver operating characteristic curve(AUC)=0.801,P<0.01].An RRI of≥0.65 on POD 1 detected AKI with a sensitivity of 87.80%and a specificity of 67.60%(AUC=0.825,P<0.01).The HRI combined with the RRI was more effective at detecting AKI than either the HRI or RRI alone(AUC=0.890,P<0.01).The HRI increased as AKI resolved while the RRI decreased as AKI resolved.CONCLUSION The HRI and RRI are non-invasive bedside indices that can identify the occurrence and recovery of early AKI after LT.展开更多
Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overco...Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overcoming resistance in granular media when burrowing with forelimbs.In the absence of effective forepaw design strategies,most robotic designs rely on increased power to enhance performance.To address this issue,this paper employs Resistive Force Theory to optimize mole-inspired forepaws,aiming to enhance burrowing efficiency.By analyzing the relationship between geometric parameters and burrowing forces,we propose several forepaw design variations.Through granular resistance assessments,an effective forepaw configuration is identified and further refined using parameters such as longitudinal and transverse curvature.Subsequently,the Particle Swarm Optimization algorithm is applied to determine the optimal forepaw design.In force-loading tests,the optimized forepaw demonstrated a 79.44%reduction in granular lift force and a 22.55%increase in propulsive force compared with the control group.In robotic burrowing experiments,the optimized forepaw achieved the longest burrow displacement(179.528 mm)and the lowest burrowing lift force(0.9355 mm/s),verifying its effectiveness in reducing the lift force and enhancing the propulsive force.展开更多
A CMOS compatible RRAM device with TaN/Ta/TaOx/Ta N structure was proposed for nonvolatile memory applications.Excellent resistive switching characteristics,including low operation voltages(<1 V),low operation curr...A CMOS compatible RRAM device with TaN/Ta/TaOx/Ta N structure was proposed for nonvolatile memory applications.Excellent resistive switching characteristics,including low operation voltages(<1 V),low operation current(<100μA),good programming/erasing endurance(>10^(6) cycles),satisfactory uniformity,and reliable data retention,have been demonstrated.Furthermore,all of the elements in the fabricated Ta N/Ta/Ta Ox/Ta N devices are highly compatible with modern CMOS manufacturing process,showing promising application in the next generation of nonvolatile memory.展开更多
BACKGROUND The hemodynamic alterations seen in liver cirrhosis lead to renal vasoconstriction,ultimately causing acute kidney injury(AKI).The renal resistive index(RRI)is the most common Doppler ultrasound variable fo...BACKGROUND The hemodynamic alterations seen in liver cirrhosis lead to renal vasoconstriction,ultimately causing acute kidney injury(AKI).The renal resistive index(RRI)is the most common Doppler ultrasound variable for measuring intrarenal vascular resistance.AIM To evaluate the association of the RRI with AKI in patients with liver cirrhosis and to identify risk factors for high RRI.METHODS This was a prospective observational study,where RRI was measured using Doppler ultrasound in 200 consecutive hospitalized patients with cirrhosis.The association of RRI with AKI was studied.The receiver operating characteristic(ROC)curve analysis was utilized to determine discriminatory cut-offs of RRI for various AKI phenotypes.Multivariate analysis was conducted to determine the predictors of high RRI.RESULTS The mean patient age was 49.08±11.68 years,with the majority(79.5%)being male;the predominant etiology of cirrhosis was alcohol(39%).The mean RRI for the study cohort was 0.68±0.09,showing a progressive increase with higher Child-Pugh class of cirrhosis.Overall,AKI was present in 129(64.5%)patients.The mean RRI was significantly higher in patients with AKI compared to those without it(0.72±0.06 vs 0.60±0.08;P<0.001).A total of 82 patients(41%)had hepatorenal syndrome(HRS)-AKI,29(22.4%)had prerenal AKI(PRA),and 18(13.9%)had acute tubular necrosis(ATN)-AKI.The mean RRI was significantly higher in the ATN-AKI(0.80±0.02)and HRS-AKI(0.73±0.03)groups than in the PRA(0.63±0.07)and non-AKI(0.60±0.07)groups.RRI demonstrated excellent discriminatory ability in distinguishing ATN-AKI from non-ATN-AKI(area under ROC curve:93.9%).AKI emerged as an independent predictor of high RRI(adjusted odds ratio[OR]:11.52),and high RRI independently predicted mortality among AKI patients(adjusted OR:3.18).CONCLUSION In cirrhosis patients,RRI exhibited a significant association with AKI,effectively differentiated between AKI phenotypes,and predicted AKI mortality.展开更多
Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,...Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.展开更多
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For th...Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For the sample with active Cu as the top electrode,the formation and rupture of metallic Cu conductive filaments can explain the resistive switching behavior;for the other samples,the generation and annihilation of nitrogen vacancies under the electric stimuli may contribute to the occurrence of resistive switching.Taking advantage of the formed and broken Co-N bonds during resistive switching,the saturation magnetization of the BN-Co films can be modulated.Thus,it investigated the resistive switching behavior of BN and BN-Co materials in this work.Similar to that of oxide materials,the resistive switching behaviors of the nitrides may be attributed to the movement of cations or anions within the dielectric or electrodes during the application of voltage.Additionally,ion migration may lead to the formation or breaking of Co-N bonds,which can effectively regulate the magnetism of BN-Co materials.This study extends resistive switching materials to nitrides,enabling the regulation of magnetism along with resistance changes,thus providing insights for the design of novel voltage-controlled magnetic devices and achieving multi-functionality.展开更多
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en...Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.展开更多
Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investig...Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction.展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
BACKGROUND Detection of early chronic changes in the kidney allograft is important for timely intervention and long-term survival.Conventional and novel ultrasound-based investigations are being increasingly used for ...BACKGROUND Detection of early chronic changes in the kidney allograft is important for timely intervention and long-term survival.Conventional and novel ultrasound-based investigations are being increasingly used for this purpose with variable results.AIM To compare the diagnostic performance of resistive index(RI)and shear wave elastography(SWE)in the diagnosis of chronic fibrosing changes of kidney allograft with histopathological results.METHODS This is a cross-sectional and comparative study.A total of 154 kidney transplant recipients were included in this study,which was conducted at the Departments of Transplantation and Radiology,Sindh Institute of Urology and Transplantation,Karachi,Pakistan,from August 2022 to February 2023.All consecutive patients with increased serum creatinine levels and reduced glomerular filtration rate(GFR)after three months of transplantation were enrolled in this study.SWE and RI were performed and the findings of these were evaluated against the kidney allograft biopsy results to determine their diagnostic utility.RESULTS The mean age of all patients was 35.32±11.08 years.Among these,126(81.8%)were males and 28(18.2%)were females.The mean serum creatinine in all patients was 2.86±1.68 mg/dL and the mean estimated GFR was 35.38±17.27 mL/min/1.73 m2.Kidney allograft biopsy results showed chronic changes in 55(37.66%)biopsies.The sensitivity,specificity,positive predictive value(PPV),and negative predictive value(NPV)of SWE for the detection of chronic allograft damage were 93.10%,96.87%%,94.73%,and 95.87%,respectively,and the diagnostic accuracy was 95.45%.For RI,the sensitivity,specificity,PPV,and NPV were 76.92%,83.33%,70.17%,and 87.62%,respectively,and the diagnostic accuracy was 81.16%.CONCLUSION The results from this study show that SWE is more sensitive and specific as compared to RI in the evaluation of chronic allograft damage.It can be of great help during the routine follow-up of kidney transplant recipients for screening and early detection of chronic changes and selecting patients for allograft biopsy.展开更多
Ferroelectric capacitors hold great promise for non-volatile memory applications.However,the challenge lies in fabricating resistive switching devices with a high on/off ratio,excellent non-volatility,and a simple man...Ferroelectric capacitors hold great promise for non-volatile memory applications.However,the challenge lies in fabricating resistive switching devices with a high on/off ratio,excellent non-volatility,and a simple manufacturing process.Here,a novel approach is introduced by demonstrating the efficacy of the coupling effect between ferroelectric polarization and oxygen vacancy-based conductive filaments in Hf_(0.5)Zr_(0.5)O_(2)(HZO)films for the creation of non-volatile resistive switching memory devices,achieving an impressive on/off ratio of 6.8×10^(3) at+1.8 V.An in-depth exploration of the resistive switching mechanism is provided and subsequently the outstanding durability and retention characteristics of these devices for resistive switching is validated.Furthermore,the device's capacity to emulate non-volatile synaptic functionalities is assessed.Our results reveal that under pulsed conditions of 1 V/-2 V with 1µs pulses spaced 50 ms apart,the device can robustly achieve potentiation/depression synaptic plasticity,while exhibiting energy consumption(0.16 fJ for potentiation,0.12 fJ for depression)reduced by 1-2 orders of magnitude compared to biological synapses.This work holds significant value as a reference for the fabrication of energy-efficient,non-volatile memory and synaptic devices.展开更多
This review summarizes the mechanism and performance of metal oxide based resistive switching memory. The origin of resistive switching (RS) behavior can be roughly classified into the conducting filament type and t...This review summarizes the mechanism and performance of metal oxide based resistive switching memory. The origin of resistive switching (RS) behavior can be roughly classified into the conducting filament type and the interface type. Here, we adopt the filament type to study the metal oxide based resistive switch- ing memory, which considers the migration of metallic cations and oxygen vacancies, as well as discuss two main mechanisms including the electrochemical metallization effect (ECM) and valence change memory effect (VCM). At the light of the influence of the electrode materials and switching layers on the RS char- acteristics, an overview has also been given on the performance parameters including the uniformity, endurance, the retention, and the multi-layer storage. Especially, we mentioned ITO (indium tin oxide) electrode and discussed the novel RS characteristics related with ITO. Finally, the challenges resistive random access memory (RRAM) device is facing, as well as the future development trend, are expressed.展开更多
In this paper, the bipolar resistive switching characteristic is reported in Ti/ZrO2/Pt resistive switching memory de- vices. The dominant mechanism of resistive switching is the formation and rupture of the conductiv...In this paper, the bipolar resistive switching characteristic is reported in Ti/ZrO2/Pt resistive switching memory de- vices. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament composed of oxygen vacancies. The conduction mechanisms for low and high resistance states are dominated by the ohmic conduc- tion and the trap-controlled space charge limited current (SCLC) mechanism, respectively. The effect of a set compliance current on the switching parameters is also studied: the low resistance and reset current are linearly dependent on the set compliance current in the log-log scale coordinate; and the set and reset voltage increase slightly with the increase of the set compliance current. A series circuit model is proposed to explain the effect of the set compliance current on the resistive switching behaviors.展开更多
In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room tempe...In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.展开更多
We demonstrate the polarization of resistive switching for a Cu/VOx/Cu memory cell.The switching behaviors of Cu/VOx/Cu cell are tested by using a semiconductor device analyzer(Agilent B1500A),and the relative micro...We demonstrate the polarization of resistive switching for a Cu/VOx/Cu memory cell.The switching behaviors of Cu/VOx/Cu cell are tested by using a semiconductor device analyzer(Agilent B1500A),and the relative micro-analysis of I-V characteristics of VOx/Cu is characterized by using a conductive atomic force microscope(CAFM).The I-V test results indicate that both the forming and the reversible resistive switching between low resistance state(LRS) and high resistance state(HRS) can be observed under either positive or negative sweep.The CAFM images for LRS and HRS directly exhibit evidence for the formation and rupture of filaments based on positive or negative voltage.The Cu/VOx/Cu sandwiched structure exhibits reversible resistive switching behavior and shows potential applications in the next generation of nonvolatile memory.展开更多
The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small...The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small defect resistance values.The best detection situations for large resistance defect happen when the path under test makes a v-to-v′ transition and another path causing short faults remains at value v.Small defects can be detected easily through static analysis.Under the best test situations,the effects of supply voltage and temperature on test results are evaluated.The results verify that lower voltage helps to improve detectability.If short material has positive temperature coefficient,low temperature is better;otherwise,high temperature is better.展开更多
The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a p...The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a point of the RFP.During the turning-off of the IGBT,the p-MOSFET is turned on,which provides a channel for the excessive carriers to flow out of the drift region and prevents the carriers from being injected into the drift region.At the same time,the electric field affected by the RFP makes the excessive carriers flow through a wider region,which almost eliminates the second phase of the turning-off of the SOI-LIGBT caused by the substrate bias.Faster turn-off speed is achieved by above two factors.During the on state of the IGBT,the p-MOSFET is off,which leads to an on-state performance like normal one.At least,the increase of the breakdown voltage for 25% and the decrease of the turn-off time for 65% can be achieved by this structure as can be verified by the numerical simulation results.展开更多
基金supported by the National Research Foundation of Korea funded by the Korean Government(grant No.RS-2023-00208801).
文摘As artificial intelligence and big data become increasingly prevalent, resistive random-access memory (RRAM) has become one of the most promising alternatives for storing massive amounts of data. In this study, we employed high-quality crystalline TiN/Al_(2)O_(3)/BaTiO_(3)/Pt RRAM with an optimized thin Al_(2)O_(3) interlayer around 12 nm thick prepared using atomic layer deposition since the thickness of the interlayer affects the memory window size. After insertion of the Al_(2)O_(3) interlayer, the novel RRAM exhibited outstanding uniform resistive switching voltage and the ON/OFF memory window drastically increased from 10 to 103 without any discernible decline in performance. Moreover, the low-resistance state and high-resistance state operating current values decreased by almost one order and three orders of magnitude, respectively, thereby decreasing the power consumption for the RESET and SET processes by more than three and almost one order of magnitude, respectively. The device also exhibits multilevel resistive switching behavior when varying the applied voltage. Finally, we also developed a 6 6 crossbar array which demonstrated consistent and reliable resistive switching behavior with minimal variation. Hence, our approach holds great promise for producing state-of-the-art non-volatile resistive switching devices.
基金supported by the National Natural Science Foundation of China(No.22090041)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2017ZT07C069)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2022B1515120014)the Natural Science Foundation of Zhejiang Province(No.LQ21A040010).
文摘The exploratory synthesis and structural characterization of twodimensional(2D)honeycomb structured Ru-based compounds are key focuses in inorganic materials research,due to the various exotic electronic states arising from the interplay of electron correlations and spinorbit coupling.Among these compounds,α-RuCl_(3) and RuBr_(3) are considered as the most promising candidates for quantum spin liquid(QSL)materials[1–3].As a homolog,α-RuI3 has attracted significant interest,but it still remains relatively unexplored.Recently,it was synthesized by high-temperature and high-pressure solid-state reaction,but reported to be different crystal structures by independent groups.Ni et al.and Nawa et al.considerα-RuI3 to be R-3(3R)and P-31c(2H)space group,respectively[4,5].Both structures have typical 2D characteristics,in which the edge-sharing RuI6 octahedra form honeycomb layers stacked along the c-axis.The primary difference lies in that the honeycomb layers stack in ABCABC mode in the 3R phase,while in ABAB mode in the 2H phase(Fig.S1).Yang et al.discussed the stability of 3R and 2H polymorphs in terms of the total energies and dynamics,finding both structures are stable.However,the total energy of the 2H phase is slightly higher,2.58 meV than that of the 3R analog[6].When it comes to the conductivity behaviour,α-RuCl3 andα-RuBr_(3) are semiconductors as normally observed in QSL materials.In contrast,α-RuI_(3) exhibits metallic response.In 2D materials,the band structure may be drastically modified by altering the stacking order[7].Hence,determining the crystal structure ofα-RuI_(3) is urgently required,which is a key step in comprehensive and in-depth analysis of its physical properties.
基金Supported by the Clinical+X Scientific Research Project of Affiliated Hospital of Qingdao University,No.QYFY+X202101060Natural Science Foundation of Shandong Province,No.ZR2023MH240.
文摘BACKGROUND Acute kidney injury(AKI)is a frequent complication after liver transplantation(LT).How to realize the early diagnosis of AKI,perform active intervention,and reduce the mortality of post-LT patients is an urgent problem to be solved.AIM To investigate the accuracy of hepatorenal index(HRI)and renal resistive index(RRI)in monitoring of early AKI after LT.METHODS This observational study included adult deceased-donor LT recipients at our center between February 2022 and February 2023 with no preoperative renal dysfunction.The HRI and RRI were recorded once per day in the postoperative period through to postoperative day(POD)7.We followed up with the patients at 1 month after LT.The patients were divided into the AKI and non-AKI groups according to the Kidney Disease Improving Global Outcomes criteria.RESULTS Of 121 patients were included in the study(mean age:50.18±8.88years;female:17.36%).AKI developed in 53 patients(43.80%).The AKI and non-AKI groups were similar in terms of their baseline characteristics.An HRI of≤1.12 on POD 1 detected AKI with a sensitivity of 62.30%and a specificity of 87.80%[area under the receiver operating characteristic curve(AUC)=0.801,P<0.01].An RRI of≥0.65 on POD 1 detected AKI with a sensitivity of 87.80%and a specificity of 67.60%(AUC=0.825,P<0.01).The HRI combined with the RRI was more effective at detecting AKI than either the HRI or RRI alone(AUC=0.890,P<0.01).The HRI increased as AKI resolved while the RRI decreased as AKI resolved.CONCLUSION The HRI and RRI are non-invasive bedside indices that can identify the occurrence and recovery of early AKI after LT.
基金financially supported in-part by the National Natural Science Foundation of China(52275011)the Natural Science Foundation of Guangdong Province(2023B1515020080)+3 种基金the Natural Science Foundation of Guangzhou(2024A04J2552)the Fundamental Research Funds for the Central Universities,the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST)(2021QNRC001)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011253)the Higher Education Institution Featured Innovation Project of Department of Education of Guangdong Province(GrantNo.2023KTSCX138).
文摘Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overcoming resistance in granular media when burrowing with forelimbs.In the absence of effective forepaw design strategies,most robotic designs rely on increased power to enhance performance.To address this issue,this paper employs Resistive Force Theory to optimize mole-inspired forepaws,aiming to enhance burrowing efficiency.By analyzing the relationship between geometric parameters and burrowing forces,we propose several forepaw design variations.Through granular resistance assessments,an effective forepaw configuration is identified and further refined using parameters such as longitudinal and transverse curvature.Subsequently,the Particle Swarm Optimization algorithm is applied to determine the optimal forepaw design.In force-loading tests,the optimized forepaw demonstrated a 79.44%reduction in granular lift force and a 22.55%increase in propulsive force compared with the control group.In robotic burrowing experiments,the optimized forepaw achieved the longest burrow displacement(179.528 mm)and the lowest burrowing lift force(0.9355 mm/s),verifying its effectiveness in reducing the lift force and enhancing the propulsive force.
基金Project supported by the Key Research and Development Program of Gansu Province-Industrial Project(Grant No.25YFGA005)。
文摘A CMOS compatible RRAM device with TaN/Ta/TaOx/Ta N structure was proposed for nonvolatile memory applications.Excellent resistive switching characteristics,including low operation voltages(<1 V),low operation current(<100μA),good programming/erasing endurance(>10^(6) cycles),satisfactory uniformity,and reliable data retention,have been demonstrated.Furthermore,all of the elements in the fabricated Ta N/Ta/Ta Ox/Ta N devices are highly compatible with modern CMOS manufacturing process,showing promising application in the next generation of nonvolatile memory.
文摘BACKGROUND The hemodynamic alterations seen in liver cirrhosis lead to renal vasoconstriction,ultimately causing acute kidney injury(AKI).The renal resistive index(RRI)is the most common Doppler ultrasound variable for measuring intrarenal vascular resistance.AIM To evaluate the association of the RRI with AKI in patients with liver cirrhosis and to identify risk factors for high RRI.METHODS This was a prospective observational study,where RRI was measured using Doppler ultrasound in 200 consecutive hospitalized patients with cirrhosis.The association of RRI with AKI was studied.The receiver operating characteristic(ROC)curve analysis was utilized to determine discriminatory cut-offs of RRI for various AKI phenotypes.Multivariate analysis was conducted to determine the predictors of high RRI.RESULTS The mean patient age was 49.08±11.68 years,with the majority(79.5%)being male;the predominant etiology of cirrhosis was alcohol(39%).The mean RRI for the study cohort was 0.68±0.09,showing a progressive increase with higher Child-Pugh class of cirrhosis.Overall,AKI was present in 129(64.5%)patients.The mean RRI was significantly higher in patients with AKI compared to those without it(0.72±0.06 vs 0.60±0.08;P<0.001).A total of 82 patients(41%)had hepatorenal syndrome(HRS)-AKI,29(22.4%)had prerenal AKI(PRA),and 18(13.9%)had acute tubular necrosis(ATN)-AKI.The mean RRI was significantly higher in the ATN-AKI(0.80±0.02)and HRS-AKI(0.73±0.03)groups than in the PRA(0.63±0.07)and non-AKI(0.60±0.07)groups.RRI demonstrated excellent discriminatory ability in distinguishing ATN-AKI from non-ATN-AKI(area under ROC curve:93.9%).AKI emerged as an independent predictor of high RRI(adjusted odds ratio[OR]:11.52),and high RRI independently predicted mortality among AKI patients(adjusted OR:3.18).CONCLUSION In cirrhosis patients,RRI exhibited a significant association with AKI,effectively differentiated between AKI phenotypes,and predicted AKI mortality.
基金supported in part by the Open Fund of State Key Laboratory of Integrated Chips and Systems,Fudan Universityin part by the National Science Foundation of China under Grant No.62304133 and No.62350610271.
文摘Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
文摘Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For the sample with active Cu as the top electrode,the formation and rupture of metallic Cu conductive filaments can explain the resistive switching behavior;for the other samples,the generation and annihilation of nitrogen vacancies under the electric stimuli may contribute to the occurrence of resistive switching.Taking advantage of the formed and broken Co-N bonds during resistive switching,the saturation magnetization of the BN-Co films can be modulated.Thus,it investigated the resistive switching behavior of BN and BN-Co materials in this work.Similar to that of oxide materials,the resistive switching behaviors of the nitrides may be attributed to the movement of cations or anions within the dielectric or electrodes during the application of voltage.Additionally,ion migration may lead to the formation or breaking of Co-N bonds,which can effectively regulate the magnetism of BN-Co materials.This study extends resistive switching materials to nitrides,enabling the regulation of magnetism along with resistance changes,thus providing insights for the design of novel voltage-controlled magnetic devices and achieving multi-functionality.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060002)National Natural Science Foundation of China(Grant Nos.62204219,62204140)+1 种基金Major Program of Natural Science Foundation of Zhejiang Province(Grant No.LDT23F0401)Thanks to Professor Zhang Yishu from Zhejiang University,Professor Gao Xu from Soochow University,and Professor Zhong Shuai from Guangdong Institute of Intelligence Science and Technology for their support。
文摘Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03090000 and 2022YFE03060002)National Natural Science Foundation of China(No.12375214)+3 种基金China National Nuclear Corporation Fundamental Research Program(No.CNNC-JCYJ-202236)Innovation Program of Southwestern Institute of Physics(No.202301XWCX006-04)supported by Youth Science and Technology Innovation Team of Sichuan Province(No.2022JDTD0003)US DoE Office of Science(Nos.DE-FG02-95ER54309 and DE-FC02-04ER54698)。
文摘Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction.
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
文摘BACKGROUND Detection of early chronic changes in the kidney allograft is important for timely intervention and long-term survival.Conventional and novel ultrasound-based investigations are being increasingly used for this purpose with variable results.AIM To compare the diagnostic performance of resistive index(RI)and shear wave elastography(SWE)in the diagnosis of chronic fibrosing changes of kidney allograft with histopathological results.METHODS This is a cross-sectional and comparative study.A total of 154 kidney transplant recipients were included in this study,which was conducted at the Departments of Transplantation and Radiology,Sindh Institute of Urology and Transplantation,Karachi,Pakistan,from August 2022 to February 2023.All consecutive patients with increased serum creatinine levels and reduced glomerular filtration rate(GFR)after three months of transplantation were enrolled in this study.SWE and RI were performed and the findings of these were evaluated against the kidney allograft biopsy results to determine their diagnostic utility.RESULTS The mean age of all patients was 35.32±11.08 years.Among these,126(81.8%)were males and 28(18.2%)were females.The mean serum creatinine in all patients was 2.86±1.68 mg/dL and the mean estimated GFR was 35.38±17.27 mL/min/1.73 m2.Kidney allograft biopsy results showed chronic changes in 55(37.66%)biopsies.The sensitivity,specificity,positive predictive value(PPV),and negative predictive value(NPV)of SWE for the detection of chronic allograft damage were 93.10%,96.87%%,94.73%,and 95.87%,respectively,and the diagnostic accuracy was 95.45%.For RI,the sensitivity,specificity,PPV,and NPV were 76.92%,83.33%,70.17%,and 87.62%,respectively,and the diagnostic accuracy was 81.16%.CONCLUSION The results from this study show that SWE is more sensitive and specific as compared to RI in the evaluation of chronic allograft damage.It can be of great help during the routine follow-up of kidney transplant recipients for screening and early detection of chronic changes and selecting patients for allograft biopsy.
基金supported by the National Natu-ral Science Foundation of China(Nos.52250281,62204088 and 62174059)the Science and Technology Projects in Guangzhou(No.202201000008)+1 种基金the Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(No.2017B030301007)the South China Normal University Youth Teacher Research and Training Fund(No.22KJ10).
文摘Ferroelectric capacitors hold great promise for non-volatile memory applications.However,the challenge lies in fabricating resistive switching devices with a high on/off ratio,excellent non-volatility,and a simple manufacturing process.Here,a novel approach is introduced by demonstrating the efficacy of the coupling effect between ferroelectric polarization and oxygen vacancy-based conductive filaments in Hf_(0.5)Zr_(0.5)O_(2)(HZO)films for the creation of non-volatile resistive switching memory devices,achieving an impressive on/off ratio of 6.8×10^(3) at+1.8 V.An in-depth exploration of the resistive switching mechanism is provided and subsequently the outstanding durability and retention characteristics of these devices for resistive switching is validated.Furthermore,the device's capacity to emulate non-volatile synaptic functionalities is assessed.Our results reveal that under pulsed conditions of 1 V/-2 V with 1µs pulses spaced 50 ms apart,the device can robustly achieve potentiation/depression synaptic plasticity,while exhibiting energy consumption(0.16 fJ for potentiation,0.12 fJ for depression)reduced by 1-2 orders of magnitude compared to biological synapses.This work holds significant value as a reference for the fabrication of energy-efficient,non-volatile memory and synaptic devices.
基金financial support from the National Natural Science Foundation of China(Nos.61474039 and 51572002)the Nature Science Foundation(Key Project) of Hubei Province (No.2015CFA052)
文摘This review summarizes the mechanism and performance of metal oxide based resistive switching memory. The origin of resistive switching (RS) behavior can be roughly classified into the conducting filament type and the interface type. Here, we adopt the filament type to study the metal oxide based resistive switch- ing memory, which considers the migration of metallic cations and oxygen vacancies, as well as discuss two main mechanisms including the electrochemical metallization effect (ECM) and valence change memory effect (VCM). At the light of the influence of the electrode materials and switching layers on the RS char- acteristics, an overview has also been given on the performance parameters including the uniformity, endurance, the retention, and the multi-layer storage. Especially, we mentioned ITO (indium tin oxide) electrode and discussed the novel RS characteristics related with ITO. Finally, the challenges resistive random access memory (RRAM) device is facing, as well as the future development trend, are expressed.
基金supported by the National Basic Research Program of China(Grant No.2011CBA00606)the National Natural Science Foundation of China(Grant Nos.61106106,11304237,61376099,and 11235008)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20130203130002 and 20110203110012)
文摘In this paper, the bipolar resistive switching characteristic is reported in Ti/ZrO2/Pt resistive switching memory de- vices. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament composed of oxygen vacancies. The conduction mechanisms for low and high resistance states are dominated by the ohmic conduc- tion and the trap-controlled space charge limited current (SCLC) mechanism, respectively. The effect of a set compliance current on the switching parameters is also studied: the low resistance and reset current are linearly dependent on the set compliance current in the log-log scale coordinate; and the set and reset voltage increase slightly with the increase of the set compliance current. A series circuit model is proposed to explain the effect of the set compliance current on the resistive switching behaviors.
基金Project supported by the National Basic Research Program of China(Grant Nos.2008CB925002 and 2010CB934200)the National Natural Science Foundation of China(Grant Nos.60825403 and 50972160)the National High Technology Research and Development Program of China(Grant No.2009AA03Z306)
文摘In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.
基金Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-1064)the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61101055,61274113,and 11204212)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100032120029)Tianjin Natural Science Foundation of China (Grant No. 10SYSYJC27700)
文摘We demonstrate the polarization of resistive switching for a Cu/VOx/Cu memory cell.The switching behaviors of Cu/VOx/Cu cell are tested by using a semiconductor device analyzer(Agilent B1500A),and the relative micro-analysis of I-V characteristics of VOx/Cu is characterized by using a conductive atomic force microscope(CAFM).The I-V test results indicate that both the forming and the reversible resistive switching between low resistance state(LRS) and high resistance state(HRS) can be observed under either positive or negative sweep.The CAFM images for LRS and HRS directly exhibit evidence for the formation and rupture of filaments based on positive or negative voltage.The Cu/VOx/Cu sandwiched structure exhibits reversible resistive switching behavior and shows potential applications in the next generation of nonvolatile memory.
文摘The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small defect resistance values.The best detection situations for large resistance defect happen when the path under test makes a v-to-v′ transition and another path causing short faults remains at value v.Small defects can be detected easily through static analysis.Under the best test situations,the effects of supply voltage and temperature on test results are evaluated.The results verify that lower voltage helps to improve detectability.If short material has positive temperature coefficient,low temperature is better;otherwise,high temperature is better.
文摘The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a point of the RFP.During the turning-off of the IGBT,the p-MOSFET is turned on,which provides a channel for the excessive carriers to flow out of the drift region and prevents the carriers from being injected into the drift region.At the same time,the electric field affected by the RFP makes the excessive carriers flow through a wider region,which almost eliminates the second phase of the turning-off of the SOI-LIGBT caused by the substrate bias.Faster turn-off speed is achieved by above two factors.During the on state of the IGBT,the p-MOSFET is off,which leads to an on-state performance like normal one.At least,the increase of the breakdown voltage for 25% and the decrease of the turn-off time for 65% can be achieved by this structure as can be verified by the numerical simulation results.