Resistant starch(RS)has attracted much researchers'attention because of its health-beneficial effects.Gut microbiota obviously shapes human health,but the effects of RS supplementation on the changes of human gut ...Resistant starch(RS)has attracted much researchers'attention because of its health-beneficial effects.Gut microbiota obviously shapes human health,but the effects of RS supplementation on the changes of human gut microbiota remain unclear.This observational meta-analysis aimed to reveal the effects of RS intake onα-diversity and composition of gut microbiota through meta-analysis.Two independent authors systematically searched articles from inception until February 2023 on four electronic databases.Twenty-four highly relevant trials were included conforming to Preferred Reporting Items for Systematic reviews and MetaAnalysis protocol,and a total of 816 individuals were included.Significant heterogeneity analyses revealed that RS intake notably decreased Shannon index(weighted mean difference(WMD):-0.11;95%confidence interval(CI):-0.21,-0.01),and stimulated the composition of health promoting bacteria genera,including Bifidobacterium(relative abundance:WMD:1.75;95%CI:0.39,3.11;bacterial populations:WMD:0.36;95%CI:0.04,0.69),Faecalibacterium(relative abundance:WMD:0.70;95%CI:0.20,1.20;fold change:effect size:0.91;95%CI:0.60,1.23),and Prevotella(relative abundance:WMD:0.35;95%CI:0.01,0.69).Taken together,the present study revealed that changes in the gut microbiota diversity and genera were correlated with RS supplementation,which may contribute to benefits in human health.展开更多
“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the g...“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the growth of probiotic bacteria. GF4 (1-fructofuranosylnystose) was the main fructo-oligosaccharides found, in higher contents compared to other food sources. Maltooligosaccharides (MOS) represented the main part of the oligosaccharides profile of Brazilian pine seeds. In descending order of importance was maltoheptaose (G7), maltohexose (G6) and maltotriose (G3). The starches from the variety Sanct josephi presented the highest amount of resistant starch that could stimulate probiotic strains, mainly B. breve and L. plantarum, and may have a prebiotic effect, potentially promoting health benefits. This study advances the understanding of the chemical composition of the main portion of the “pinhão” enhancing awareness of its potential as a healthy food source, contributing to different uses and indirectly with the species preservation.展开更多
With 94 spring wheat cultivars as experimental materials, the correlations between the content of resistant starch (RS) in uncooked flour and cooked flour, and the apparent amylose content (AAC), protein, lipid we...With 94 spring wheat cultivars as experimental materials, the correlations between the content of resistant starch (RS) in uncooked flour and cooked flour, and the apparent amylose content (AAC), protein, lipid were investigated. The results showed that RS contents in both the uncooked flour and cooked flour assumed significantly positive correlation with AAC, and significantly negative cor- relation with protein content; and they were proved to be not significantly correlated with lipid content. RS content in uncooked flour was significantly correlated with that in cooked flour. These results provided references for the genetic improvement of wheat cultivars.展开更多
This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice ger...This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice germplasm resource project team in Jiangsu Academy of Agricultural Sciences, to analyze the differences in RVA eigenvalues and starch crystal thermodynamic properties using differential scanning calorimeter (DSC). The result showed that three rice materials with high contents of resistant starch exhibited low breakdown viscosity and high setback vis- cosity; three rice materials with low contents of resistant starch exhibited high breakdown viscosity and low setback viscosity. Significant differences were observed in RVA eigenvalues and starch crystal thermodynamic properties among rice germplasms with different contents of resistant starch, which provided new indices for breeding functional rice cultivars with high resistant starch content.展开更多
Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco anal...Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco analysis (RVA) and the Brabender farinograph were used to study the pasting properties and the viscoelasticity of blends of RS (RS3 and RS2) and three wheat flours. The wheat flours represented strong gluten wheat (SGW), intermediate gluten wheat (IGW), and weak gluten wheat (WGW) flours, at different levels of RS substitution (0, 5, 10, 15, and 20%). The influence of RS3 on the control wheat flours and RS-wheat flour blends were consistent with those of RS2. The peak, trough, and final viscosities of RS3-wheat flour blends were higher than those of the corresponding RS2-wheat flour blends. The peak, trough, breakdown, final, and setback viscosities ofwheat-RS blends decreased with an increase in resistant starch contents from 0 to 20% in the blends. The 0-20% RS-wheat flour blends were all able to form doughs. The dough development times, dough stabilities, dough breakdown times, and farinograph quality numbers for the RS-wheat flour blends decreased as the RS proportion in the blends increased. The values for RS-SGW flour blends were the highest, followed by RS-IGW and then RS-WGW flour blends. The water absorption values for RS-wheat flour blends and the mixing tolerance index for RS-WGW flour blends were found to increase significantly with an increasing proportion of RS from 0 to 20%, but the mixing tolerance index for RS-SGW and RS-IGW flour blends showed no significant differences amongst the different ratios. Correlation analysis showed that the Farinograph quality number was highly positively correlated with dough breakdown time, dough stability, and dough development time (r= 1.000, 0.958, 0.894), and highly negatively correlated with the mixing tolerance index (r =-0.890). Data from this study can be used for the development of dough-based products. It also provides a basis for RS-wheat flour blends and quality evaluation in the food industry.展开更多
Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and...Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and pharmacotherapy have enhanced obesity treatment, but it should has support from diet, physical exercise and lifestyle modification, especially the functional food. Resistant starch, an indigestible starch, has been studied for years for its beneficial effects on regulating blood glucose level and lipid metabolism. The aim of this review is to summarize the effect of resistant starch on weight loss and the possible mechanisms. According to numerous previous studies it could be concluded that resistant starch can reduce fat accumulation, enhance insulin sensitivity, regulate blood glucose level and lipid metabolism. Recent investigations have focused on the possible associations between resistant starch and incretins as well as gut microbiota. Resistant starch seems to be a promising dietary fiber for the prevention or treatment of obesity and its related diseases.展开更多
With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and acce...With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and accepted.High RS diet shows great benefit for the human health,and breeding high RS rice variety is a great target for realizing dietary intervention.To provide guidance for RS improvement in rice,this review summarized the unique physiochemical properties of RS and the possible approaches,i.e.genetic regulation,for enhancing RS content in rice,and proposed the potential ways to obtain rice variety with high RS content.展开更多
Starch from cereal grains,pulse grains,and tubers is a major energy substrate in swine rations constituting up to 55%of the diet.In pigs,starch digestion is initiated by salivary and then pancreaticα-amylase,and has ...Starch from cereal grains,pulse grains,and tubers is a major energy substrate in swine rations constituting up to 55%of the diet.In pigs,starch digestion is initiated by salivary and then pancreaticα-amylase,and has as final step the digestion of disaccharides by the brush-border enzymes in the small intestine that produce monosaccharides(glucose)for absorption.Resistant starch(RS)is the proportion of starch that escapes the enzymatic digestion and absorption in the small intestine.The undigested starch reaches the distal small intestine and hindgut for microbial fermentation,which produces short-chain fatty acids(SCFA)for absorption.SCFA in turn,influence microbial ecology and gut health of pigs.These fermentative metabolites exert their benefits on gut health through promoting growth and proliferation of enterocytes,maintenance of intestinal integrity and thus immunity,and modulation of the microbial community in part by suppressing the growth of pathogenic bacteria while selectively enhancing beneficial microbes.Thus,RS has the potential to confer prebiotic effects and may contribute to the improvement of intestinal health in pigs during the post-weaning period.Despite these benefits to the well-being of pigs,RS has a contradictory effect due to lower energetic efficiency of fermented vs.digested starch absorption products.The varying amount and type of RS interact differently with the digestion process along the gastrointestinal tract affecting its energy efficiency and host physiological responses including feed intake,energy metabolism,and feed efficiency.Results of research indicate that the use of RS as prebiotic may improve gut health and thereby,reduce the incidence of post-weaning diarrhea(PWD)and associated mortality.This review summarizes our current knowledge on the effects of RS on microbial ecology,gut health and growth performance in pigs.展开更多
Background:Consumption of resistant starch(RS)has been associated with various intestinal and systemic health benefits,but knowledge of its effects on intestinal health and inflammatory response in stressed birds is l...Background:Consumption of resistant starch(RS)has been associated with various intestinal and systemic health benefits,but knowledge of its effects on intestinal health and inflammatory response in stressed birds is limited.Here,we examined how dietary RS supplementation from 12%raw potato starch(RPS)modulated inflammatory severity induced by lipopolysaccharide(LPS)in meat ducks.Results:LPS administration at 14,16,and 18 d(chronic challenge)decreased body weight(BW)and glucagon-like peptide 1 receptor(GLP-1R)level with higher intestinal permeability and inflammation,evident by higher proinflammatory cytokine levels.Dietary 12%RPS supplementation enhanced Claudin-1 and GLP-1R expression,along with lower levels of inflammatory factors in both ileum and serum.Microbiome analysis showed that RS treatment shifted microbial structure reflected by enriched the proportion of Firmicutes,Bifidobacterium,Ruminococcus,etc.Dietary RS addition also significantly increased the concentrations of propionate and butyrate during chronic LPS challenge.Furthermore,response to acute challenge,the ducks received 2 mg/kg BW LPS at 14 d had higher concentrations of serum endotoxins and inflammatory cytokines,as well as upregulated transcription of toll like receptor 4(TLR4)in ileum when compared to control birds.Analogous to GLP-1 agonist liraglutide,dietary RS addition decreased endotoxins and inflammation cytokines,whereas it upregulated the GLP-1 synthesis related genes expression.Meanwhile,dietary RS supplementation suppressed the acute LPS challenge-induced TLR4 transcription.Conclusions:These data suggest that dietary 12%RPS supplementation could attenuate the LPS-induced inflammation as well as intestinal injury of meat ducks,which might involve in the alteration in gut microbiota,SCFAs production and the signaling pathways of TLR4 and GLP-1/GLP-1R.展开更多
Background:Yam(Dioscorea opposita Thunb.)has been consumed as a food and used in traditional Chinese medicine for thousands of years.Resistant starch(RS)3 is of particular interest because it is heat-resistant,safe an...Background:Yam(Dioscorea opposita Thunb.)has been consumed as a food and used in traditional Chinese medicine for thousands of years.Resistant starch(RS)3 is of particular interest because it is heat-resistant,safe and non-toxic,and retains good nutritional benefits;it is therefore used in a wide range of traditional and emerging foods as a heat-stable prebiotic ingredient.In our previous study,we found that yam RS includes strong lipid-lowering and anti-constipation activities.Methods:Yam RS3 was prepared by autoclaving-retrogradation and pullulanase debranching to yield autoclaving-retrogradation yam RS and pullulanase debranching yam RS,respectively.First,the physicochemical properties of both RS3s were analyzed.Second,the structures of the RS3s were characterized by scanning electron microscopy,X-ray powder diffraction,and Fourier transform infrared spectroscopy.Finally,the regulatory effects of the RS3s on the gut microbiota were evaluated using an in vitro fecal fermentation model.Results:The RS content of the RS3s decreased after processing,but was higher in pullulanase debranching yam RS(35.67%)than in autoclaving-retrogradation yam RS(28.71%).Compared with native yam starch,RS3s lost their original granular shapes and instead exhibited irregularly shapes with continuous phases.The crystalline structure of the RS3s was completely altered,with pullulanase debranching yam RS exhibiting B-type patterns.Both RS3s,and especially pullulanase debranching yam RS,promoted a significant increase in short chain fatty acid content after in vitro fermentation(all P<0.05).Moreover,pullulanase debranching yam RS significantly increased the abundance of beneficial bacteria and decreased the abundance of harmful bacteria such as Escherichia and Shigella(all P<0.05).Conclusion:Our findings show that yam RS3s can regulate the composition of the gut microbiota and promote the production of short chain fatty acid,especially butyric acid.Pullulanase debranching was a more effective method for producing functional yam RS3.展开更多
Semen coicis resistant starch is a type of starch which has undergone retrogradation. In this study,the structural characteristics of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Seme...Semen coicis resistant starch is a type of starch which has undergone retrogradation. In this study,the structural characteristics of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch were investigated. The field emission scanning electron microscopy results indicated that compared to Semen coicis native starch and high-amylose maize starch,the surface of heat-moisture treated Semen coicis resistant starch was rough and full of irregular layered strips. The Fourier transform infrared spectroscopy measurements indicated the degree of ordered structure values of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch are 1.355,1.372,and 1.410,respectively,and the degree of double helix values is 1.931,1.942,and 2.027,respectively,indicating that the degree of ordered structure and double helix structure of heat-moisture treated Semen coicis resistant starch is both higher than those of Semen coicis native starch and high-amylose maize starch. ^(13) C nuclear magnetic resonance spectroscopy showed that Semen coicis native starch and high-amylose maize starch exhibited A-type crystal structures,while heat-moisture treated Semen coicis resistant starch displayed B-type crystal structures. The relative crystallinity of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch is 76.41,85.36,and 87.25,respectively,and the percentages of amorphous region are 5.78,4.72,and 4.39,respectively. Additionally,heat-moisture treated Semen coicis resistant starch could increase the proliferation of Bifidobacterium bifidum more than Semen coicis native starch or high-amylose maize starch. Bifidobacterium bifidum displayed a higher tolerance under simulated gastrointestinal tract conditions such as low p H,bile acid,pepsin,and trypsin in heat-moisture treated Semen coicis resistant starch medium than in Semen coicis native starch or high-amylose maize starch media.展开更多
Background:Escherichia coli(E.coli)infection in humans and animals usually comes with gut dysbiosis,which is potential culprit to skeletal health,it is still unclear to whether diet interfered gut microbiome changes c...Background:Escherichia coli(E.coli)infection in humans and animals usually comes with gut dysbiosis,which is potential culprit to skeletal health,it is still unclear to whether diet interfered gut microbiome changes can be a protective strategy to bone loss development.Here,the effects of resistant starch from raw potato starch(RPS),a type of prebiotic,on E.coli-induced bone loss and gut microbial composition in meat ducks were evaluated.Results:The results showed that dietary 12%RPS treatment improved bone quality,depressed bone resorption,and attenuated the pro-inflammatory reaction in both ileum and bone marrow.Meanwhile,the 12%RPS diet also increased the abundance of Firmicutes in E.coli-treated birds,along with higher production of short-chain fatty acids(SCFAs)especially propionate and butyrate.Whereas addition ofβ-acid,an inhibitor of bacterial SCFAs production,to the drinking water of ducks fed 12%RPS diet significantly decreased SCFAs level in cecum content and eliminated RPS-induced tibial mass improvement.Further,treatment with MI-2 to abrogate mucosa-associated lymphoid tissue lymphoma translocation protein 1(Malt1)activity replicated the protective role of dietary 12%RPS in E.coli-induced bone loss including reduced the inhibition on nuclear factorκB(NF-κB)inflammasome activation,decreased bone resorption,and improved bone quality,which were correlated with comparable and higher regulatory T cells(Treg)frequency in MI-2 and 12%RPS group,respectively.Conclusions:These findings suggested that the diet with 12%RPS could alleviate E.coli-induced bone loss in meat ducks by changing the gut microbial composition and promoting concomitant SCFAs production,and consequently inhibiting Malt1/NF-κB inflammasome activation and Treg cells expansion.展开更多
Using 'Luotian chestnut' as the raw material, the content changes of resistant starch and main nutrients in the processed fruit were studied after taken common processing of high-temperature steaming of canned food,...Using 'Luotian chestnut' as the raw material, the content changes of resistant starch and main nutrients in the processed fruit were studied after taken common processing of high-temperature steaming of canned food, sand-mixed frying and cooking without shells, with the aim to find out the effects of different processing methods on the content changes of nutrients in chestnuts. The result showed that there were significant differences in the resistant starch contents by different processing methods. After processing, the retention degree of resistant starch was the lowest using the methods of sand-mixed frying, of 42.42%, while the highest was found in canned chestnut products, of 93.16%. Among the main nutrients, adding water and sugar would reduce content of resistant starch, while increasing the protein content would promote the retention of resistant starch retention. The changes in lipid content had no effect or not a single promoting or weakening effects on the content of resistant starch.展开更多
This is a review on resistant starch(RS),resistant dextrin(RD),and polydextrose(PDX),focusing on their similarities and differences.RS refers to the starch(or a portion of)that cannot be digested in the small intestin...This is a review on resistant starch(RS),resistant dextrin(RD),and polydextrose(PDX),focusing on their similarities and differences.RS refers to the starch(or a portion of)that cannot be digested in the small intestine,but can be partially fermented in the colon.The enzyme resistance of RS is mainly due to either its crystalline/granular structure or its interaction with other components.RD is produced by pyrodextrinization of starch,while PDX is produced by polycondensation of glucose and sorbitol.Both RD and PDX contain glycosidic linkages that are not digestible by the enzymes in the small intestine.RS is not soluble in water,whereas RD and PDX are soluble,mainly due to their molecular structures and other structural features.The major health benefits of RS,RD,and PDX are quite similar,including gut health,prebiotic effects,glycemic control,weight management,and prevention of cardiovascular disease.However,the efficacies can be different among them,for example,the degree and rate of gut fermentation.This review compares the definitions,functional properties,and health benefits of RS,RD,and PDX with the underlying mechanisms,which can be useful for their incorporation in food formulations to improve human health and wellness.展开更多
Resistant starch from plantain(Macho Musa paradisiaca L.)and banana(Roatan Musa sapientum L.)varieties was chemically modified by crosslinking using epichlorohydrin(EPI).These modified starches were subjected to in vi...Resistant starch from plantain(Macho Musa paradisiaca L.)and banana(Roatan Musa sapientum L.)varieties was chemically modified by crosslinking using epichlorohydrin(EPI).These modified starches were subjected to in vitro digestibility studies using the Englyst method to determine the content of rapidly digestible starch(RDS),slowly digestible starch(SDS)and resistant starch(RS).The thermal stability of these crosslinked starches was evaluated by gelatinization and retrogradation analyses,and their enthalpies were determined using differential scanning calorimetry(DSC).Additionally,their functional properties were evaluated.Chemical modification with EPI significantly increased the RS content in both starch varieties compared to that in native starch.The enthalpy and gelatinization temperature decreased in the EPI-modified starches of both varieties,indicating lower thermal stability during the gelatinization process compared to that of native starch.In general,both varieties of crosslinked plantain starch had lower viscosity(0.43 Pa^(*)s)than did native starch(0.58 Pa^(*)s).The results indicates that this starch crosslinked with EPI constitutes an alternative for use in food for people with health problems such as high cholesterol levels or postprandial insulin concentrations.展开更多
Starch biosynthesis is a complex process that relies on the coordinated action of multiple enzymes.Resistant starch is not digested in the small intestine,thus preventing a rapid rise in the glycemic index.Starch synt...Starch biosynthesis is a complex process that relies on the coordinated action of multiple enzymes.Resistant starch is not digested in the small intestine,thus preventing a rapid rise in the glycemic index.Starch synthase 2a(SS2a)is a key enzyme in amylopectin biosynthesis that has significant effects on starch structure and properties.In this study,we identified an ss2a null mutant(M3-1413)with a single base mutation from an ethyl methane sulfonate(EMS)-mutagenized population of barley.The mutation was located at the 3'end of the first intron of the RNA splicing receptor(AG)site,and resulted in abnormal RNA splicing and two abnormal transcripts of ss2a,which caused the inactivation of the SS2a gene.The starch structure and properties were significantly altered in the mutant,with M3-1413 containing lower total starch and higher amylose and resistant starch levels.This study sheds light on the effect of barley ss2a null mutations on starch properties and will help to guide new applications of barley starch in the development of nutritious food products.展开更多
Resistant starch(RS),a healthy dietary fiber,is a particular type of starch that has attracted much research attention in recent years.RS has important roles in reducing glycemic index,postprandial blood glucose level...Resistant starch(RS),a healthy dietary fiber,is a particular type of starch that has attracted much research attention in recent years.RS has important roles in reducing glycemic index,postprandial blood glucose levels,and serum cholesterol levels,thereby improving and preventing many diseases,such as diabetes,obesity,and cardiovascular disease.The formation of RS is influenced by intrinsic properties of starch(e.g.,starch granule structure,starch crystal structure,and amylose-to-amylopectin ratio)and non-starch components(e.g.,proteins,lipids,and sugars),aswell as storage and processing conditions.Recent studies have revealed that several starch-synthesis-related genes(SSRGs)are crucial for the formation of RS during seed development.Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content,suggesting their potential roles in RS formation.This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.展开更多
The immediate post-weaning period poses a major challenge on the survival of piglets. Similarly, newly hatched chicks face life threatening challenges due to enteric infections. In the past several years, in-feed anti...The immediate post-weaning period poses a major challenge on the survival of piglets. Similarly, newly hatched chicks face life threatening challenges due to enteric infections. In the past several years, in-feed antibiotics have been used to reduce these production problems and improve growth. However, in-feed antibiotics have been banned in many jurisdictions and therefore the most effective alternatives to infeed antibiotics must be developed. To date, several studies have been conducted to develop alternatives to antibiotics. One of the potential candidates as alternatives to in-feed antibiotics is resistant starch(RS). Resistance starch is a type of starch that resists enzymatic digestion in the upper parts of the gastrointestinal tract and therefore passes to hindgut where it can be fermented by resident microorganisms. Microbial fermentation of RS in the hindgut results in the production of short chain fatty acids(SCFA). Production of SCFA in turn results in growth and proliferation of colonic and cecal cells, increased expression of genes involved in gut development, and creation of an acidic environment. The acidic environment suppresses the growth of pathogenic microorganisms while selectively promoting the growth of beneficial microbes. Thus, RS has the potential to improve gut health and function by modifying and stabilising gut microbial community and by improving the immunological status of the host. In this review, we discussed the roles of RS in modifying and stabilising gut microbiota, gut health and function, carcass quality, and energy metabolism and growth performance in pigs and poultry.展开更多
High-protein diet could cause an increase in protein fermentation in the large intestine, leading to an increased production of potentially detrimental metabolites. We hypothesized that an increase in corn resistant s...High-protein diet could cause an increase in protein fermentation in the large intestine, leading to an increased production of potentially detrimental metabolites. We hypothesized that an increase in corn resistant starch content may attenuate the protein fermentation. The aim of this study was to evaluate the effect of resistant starch on protein fermentation by inocula from large intestine of pigs using in vitro cultivation. Fermentation patterns were analyzed during a 24-h incubation of cecal and colonic digesta with varying corn resistant starch contents, using casein protein as sole nitrogen source. The results showed that the concentration of short-chain fatty acids(SCFA) and cumulative gas production were significantly increased(P < 0.05), while ammonia-nitrogen(NH_3-N) and branched-chain fatty acids(BCFA), which indicated protein fermentation, decreased when the corn resistant starch levels increased(P < 0.05). The copies of total bacteria, Bifidobacterium and Lactobacillus were significantly increased with the increased corn resistant starch levels after incubation(P < 0.05). The copies of the Bifidobacterium and Lactobacillus in cecum were significantly higher than those in colon(P < 0.05). We conclude that the addition of corn resistant starch weakens the protein fermentation by influencing microbial population and reducing protein fermentation in the cecum and colon in vitro.展开更多
Background and Objectives:Few studies exist on resistant starch in rice grains.The Okinawa Institute of Science and Technology Graduate University(OIST)has developed a new rice(OIST rice,OR)rich in resistant starch.Th...Background and Objectives:Few studies exist on resistant starch in rice grains.The Okinawa Institute of Science and Technology Graduate University(OIST)has developed a new rice(OIST rice,OR)rich in resistant starch.This study aimed to clarify the effect of OR on postprandial glucose concentrations.Methods and Study Design:This single-center,open,randomized,crossover comparative study included 17 patients with type 2 diabetes.All participants completed two meal tolerance tests using OR and white rice(WR).Results:The median age of the participants was 70.0[59.0-73.0]years,and the mean body mass index was 25.9±3.1 kg/m^(2).The difference in total area under the curve(AUC)of plasma glucose was-8223(95%confidence interval[CI]:-10100 to-6346,p<0.001)mg·min/dL.The postprandial plasma glucose was significantly lower with OR than with WR.The difference in the AUC of insulin was-1139(95%CI:-1839 to-438,p=0.004)μU·min/mL.The difference in the AUC of total gastric inhibitory peptide(GIP)and total glucagon-like peptide-1(GLP-1)was-4886(95%CI:-8456 to-1317,p=0.011)and-171(95%CI:-1034 to 691,p=0.673)pmol·min/L,respectively.Conclusions:OR can be ingested as rice grains and significantly reduced postprandial plasma glucose compared to WR independent of insulin secretion in patients with type 2 diabetes.OR could have escaped absorption not only from the upper small intestine but also from the lower small intestine.展开更多
基金financially supported by the National Key R&D Program of China(2022YFF1100600,2022YFF1100605)the Science and Technology Support Program(Modern Agriculture)of Jiangsu Province(BE2022323)the National Natural Science Foundation of China(32302011)。
文摘Resistant starch(RS)has attracted much researchers'attention because of its health-beneficial effects.Gut microbiota obviously shapes human health,but the effects of RS supplementation on the changes of human gut microbiota remain unclear.This observational meta-analysis aimed to reveal the effects of RS intake onα-diversity and composition of gut microbiota through meta-analysis.Two independent authors systematically searched articles from inception until February 2023 on four electronic databases.Twenty-four highly relevant trials were included conforming to Preferred Reporting Items for Systematic reviews and MetaAnalysis protocol,and a total of 816 individuals were included.Significant heterogeneity analyses revealed that RS intake notably decreased Shannon index(weighted mean difference(WMD):-0.11;95%confidence interval(CI):-0.21,-0.01),and stimulated the composition of health promoting bacteria genera,including Bifidobacterium(relative abundance:WMD:1.75;95%CI:0.39,3.11;bacterial populations:WMD:0.36;95%CI:0.04,0.69),Faecalibacterium(relative abundance:WMD:0.70;95%CI:0.20,1.20;fold change:effect size:0.91;95%CI:0.60,1.23),and Prevotella(relative abundance:WMD:0.35;95%CI:0.01,0.69).Taken together,the present study revealed that changes in the gut microbiota diversity and genera were correlated with RS supplementation,which may contribute to benefits in human health.
文摘“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the growth of probiotic bacteria. GF4 (1-fructofuranosylnystose) was the main fructo-oligosaccharides found, in higher contents compared to other food sources. Maltooligosaccharides (MOS) represented the main part of the oligosaccharides profile of Brazilian pine seeds. In descending order of importance was maltoheptaose (G7), maltohexose (G6) and maltotriose (G3). The starches from the variety Sanct josephi presented the highest amount of resistant starch that could stimulate probiotic strains, mainly B. breve and L. plantarum, and may have a prebiotic effect, potentially promoting health benefits. This study advances the understanding of the chemical composition of the main portion of the “pinhão” enhancing awareness of its potential as a healthy food source, contributing to different uses and indirectly with the species preservation.
文摘With 94 spring wheat cultivars as experimental materials, the correlations between the content of resistant starch (RS) in uncooked flour and cooked flour, and the apparent amylose content (AAC), protein, lipid were investigated. The results showed that RS contents in both the uncooked flour and cooked flour assumed significantly positive correlation with AAC, and significantly negative cor- relation with protein content; and they were proved to be not significantly correlated with lipid content. RS content in uncooked flour was significantly correlated with that in cooked flour. These results provided references for the genetic improvement of wheat cultivars.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(11)1020]~~
文摘This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice germplasm resource project team in Jiangsu Academy of Agricultural Sciences, to analyze the differences in RVA eigenvalues and starch crystal thermodynamic properties using differential scanning calorimeter (DSC). The result showed that three rice materials with high contents of resistant starch exhibited low breakdown viscosity and high setback vis- cosity; three rice materials with low contents of resistant starch exhibited high breakdown viscosity and low setback viscosity. Significant differences were observed in RVA eigenvalues and starch crystal thermodynamic properties among rice germplasms with different contents of resistant starch, which provided new indices for breeding functional rice cultivars with high resistant starch content.
基金the National Natural Science Foundation of China (30671270)the National High Technology R & D Program of China (2006AA100101).
文摘Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco analysis (RVA) and the Brabender farinograph were used to study the pasting properties and the viscoelasticity of blends of RS (RS3 and RS2) and three wheat flours. The wheat flours represented strong gluten wheat (SGW), intermediate gluten wheat (IGW), and weak gluten wheat (WGW) flours, at different levels of RS substitution (0, 5, 10, 15, and 20%). The influence of RS3 on the control wheat flours and RS-wheat flour blends were consistent with those of RS2. The peak, trough, and final viscosities of RS3-wheat flour blends were higher than those of the corresponding RS2-wheat flour blends. The peak, trough, breakdown, final, and setback viscosities ofwheat-RS blends decreased with an increase in resistant starch contents from 0 to 20% in the blends. The 0-20% RS-wheat flour blends were all able to form doughs. The dough development times, dough stabilities, dough breakdown times, and farinograph quality numbers for the RS-wheat flour blends decreased as the RS proportion in the blends increased. The values for RS-SGW flour blends were the highest, followed by RS-IGW and then RS-WGW flour blends. The water absorption values for RS-wheat flour blends and the mixing tolerance index for RS-WGW flour blends were found to increase significantly with an increasing proportion of RS from 0 to 20%, but the mixing tolerance index for RS-SGW and RS-IGW flour blends showed no significant differences amongst the different ratios. Correlation analysis showed that the Farinograph quality number was highly positively correlated with dough breakdown time, dough stability, and dough development time (r= 1.000, 0.958, 0.894), and highly negatively correlated with the mixing tolerance index (r =-0.890). Data from this study can be used for the development of dough-based products. It also provides a basis for RS-wheat flour blends and quality evaluation in the food industry.
基金supported by the National Natural Science Foundation major international(regional)joint research project(81220108006)to WJYoung Scientists Fund of National Natural Science Foundation(81200292),Young Scientists Fund of National Natural Science Foundation(81200655)to LSShanghai Rising-Star Program(13QA1402900)and Hong Kong Scholars Program(XJ2013035)to HL
文摘Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and pharmacotherapy have enhanced obesity treatment, but it should has support from diet, physical exercise and lifestyle modification, especially the functional food. Resistant starch, an indigestible starch, has been studied for years for its beneficial effects on regulating blood glucose level and lipid metabolism. The aim of this review is to summarize the effect of resistant starch on weight loss and the possible mechanisms. According to numerous previous studies it could be concluded that resistant starch can reduce fat accumulation, enhance insulin sensitivity, regulate blood glucose level and lipid metabolism. Recent investigations have focused on the possible associations between resistant starch and incretins as well as gut microbiota. Resistant starch seems to be a promising dietary fiber for the prevention or treatment of obesity and its related diseases.
基金the Chinese Ministry of Agriculture(Grant No.2016ZX08001006)Science Technology Department of Zhejiang Province,China(Grant Nos.2016C02052-6,C02058-4,2017C02019 and 2018C02055)。
文摘With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and accepted.High RS diet shows great benefit for the human health,and breeding high RS rice variety is a great target for realizing dietary intervention.To provide guidance for RS improvement in rice,this review summarized the unique physiochemical properties of RS and the possible approaches,i.e.genetic regulation,for enhancing RS content in rice,and proposed the potential ways to obtain rice variety with high RS content.
基金Project funding was provided by a Natural Sciences and Engineering Research Council of Canada(Ottawa,ON,Canada)Discovery Grant。
文摘Starch from cereal grains,pulse grains,and tubers is a major energy substrate in swine rations constituting up to 55%of the diet.In pigs,starch digestion is initiated by salivary and then pancreaticα-amylase,and has as final step the digestion of disaccharides by the brush-border enzymes in the small intestine that produce monosaccharides(glucose)for absorption.Resistant starch(RS)is the proportion of starch that escapes the enzymatic digestion and absorption in the small intestine.The undigested starch reaches the distal small intestine and hindgut for microbial fermentation,which produces short-chain fatty acids(SCFA)for absorption.SCFA in turn,influence microbial ecology and gut health of pigs.These fermentative metabolites exert their benefits on gut health through promoting growth and proliferation of enterocytes,maintenance of intestinal integrity and thus immunity,and modulation of the microbial community in part by suppressing the growth of pathogenic bacteria while selectively enhancing beneficial microbes.Thus,RS has the potential to confer prebiotic effects and may contribute to the improvement of intestinal health in pigs during the post-weaning period.Despite these benefits to the well-being of pigs,RS has a contradictory effect due to lower energetic efficiency of fermented vs.digested starch absorption products.The varying amount and type of RS interact differently with the digestion process along the gastrointestinal tract affecting its energy efficiency and host physiological responses including feed intake,energy metabolism,and feed efficiency.Results of research indicate that the use of RS as prebiotic may improve gut health and thereby,reduce the incidence of post-weaning diarrhea(PWD)and associated mortality.This review summarizes our current knowledge on the effects of RS on microbial ecology,gut health and growth performance in pigs.
基金supported by the National Natural Science Foundation of China(31772622)China Agriculture Research System(CARS-42-10)+2 种基金National Key R&D Program of China(2017YFD0502004)“111”project of Foreign Experts Affairs of ChinaSichuan Agricultural University 211 Foundation.
文摘Background:Consumption of resistant starch(RS)has been associated with various intestinal and systemic health benefits,but knowledge of its effects on intestinal health and inflammatory response in stressed birds is limited.Here,we examined how dietary RS supplementation from 12%raw potato starch(RPS)modulated inflammatory severity induced by lipopolysaccharide(LPS)in meat ducks.Results:LPS administration at 14,16,and 18 d(chronic challenge)decreased body weight(BW)and glucagon-like peptide 1 receptor(GLP-1R)level with higher intestinal permeability and inflammation,evident by higher proinflammatory cytokine levels.Dietary 12%RPS supplementation enhanced Claudin-1 and GLP-1R expression,along with lower levels of inflammatory factors in both ileum and serum.Microbiome analysis showed that RS treatment shifted microbial structure reflected by enriched the proportion of Firmicutes,Bifidobacterium,Ruminococcus,etc.Dietary RS addition also significantly increased the concentrations of propionate and butyrate during chronic LPS challenge.Furthermore,response to acute challenge,the ducks received 2 mg/kg BW LPS at 14 d had higher concentrations of serum endotoxins and inflammatory cytokines,as well as upregulated transcription of toll like receptor 4(TLR4)in ileum when compared to control birds.Analogous to GLP-1 agonist liraglutide,dietary RS addition decreased endotoxins and inflammation cytokines,whereas it upregulated the GLP-1 synthesis related genes expression.Meanwhile,dietary RS supplementation suppressed the acute LPS challenge-induced TLR4 transcription.Conclusions:These data suggest that dietary 12%RPS supplementation could attenuate the LPS-induced inflammation as well as intestinal injury of meat ducks,which might involve in the alteration in gut microbiota,SCFAs production and the signaling pathways of TLR4 and GLP-1/GLP-1R.
基金the key project at central government level(No.2060302)Key R&D Project of Hebei Province(V1584581541757)+1 种基金the Science and Technology Project of Qinghai Province(No.2021-SF-150)the National Key R&D Program of China(No.2019YFC1710603,No.2019YFC1710604).
文摘Background:Yam(Dioscorea opposita Thunb.)has been consumed as a food and used in traditional Chinese medicine for thousands of years.Resistant starch(RS)3 is of particular interest because it is heat-resistant,safe and non-toxic,and retains good nutritional benefits;it is therefore used in a wide range of traditional and emerging foods as a heat-stable prebiotic ingredient.In our previous study,we found that yam RS includes strong lipid-lowering and anti-constipation activities.Methods:Yam RS3 was prepared by autoclaving-retrogradation and pullulanase debranching to yield autoclaving-retrogradation yam RS and pullulanase debranching yam RS,respectively.First,the physicochemical properties of both RS3s were analyzed.Second,the structures of the RS3s were characterized by scanning electron microscopy,X-ray powder diffraction,and Fourier transform infrared spectroscopy.Finally,the regulatory effects of the RS3s on the gut microbiota were evaluated using an in vitro fecal fermentation model.Results:The RS content of the RS3s decreased after processing,but was higher in pullulanase debranching yam RS(35.67%)than in autoclaving-retrogradation yam RS(28.71%).Compared with native yam starch,RS3s lost their original granular shapes and instead exhibited irregularly shapes with continuous phases.The crystalline structure of the RS3s was completely altered,with pullulanase debranching yam RS exhibiting B-type patterns.Both RS3s,and especially pullulanase debranching yam RS,promoted a significant increase in short chain fatty acid content after in vitro fermentation(all P<0.05).Moreover,pullulanase debranching yam RS significantly increased the abundance of beneficial bacteria and decreased the abundance of harmful bacteria such as Escherichia and Shigella(all P<0.05).Conclusion:Our findings show that yam RS3s can regulate the composition of the gut microbiota and promote the production of short chain fatty acid,especially butyric acid.Pullulanase debranching was a more effective method for producing functional yam RS3.
基金Supported by the National Natural Science Fund of China(No.31301441)the Cooperation in Production,Study and Research of Science and Technology Major Projects of Fujian Province(2012N5004)+2 种基金the Natural Science Foundation of Fujian Province(2012J01081)the Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province([2012]03)the Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University(cxtd12009)
文摘Semen coicis resistant starch is a type of starch which has undergone retrogradation. In this study,the structural characteristics of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch were investigated. The field emission scanning electron microscopy results indicated that compared to Semen coicis native starch and high-amylose maize starch,the surface of heat-moisture treated Semen coicis resistant starch was rough and full of irregular layered strips. The Fourier transform infrared spectroscopy measurements indicated the degree of ordered structure values of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch are 1.355,1.372,and 1.410,respectively,and the degree of double helix values is 1.931,1.942,and 2.027,respectively,indicating that the degree of ordered structure and double helix structure of heat-moisture treated Semen coicis resistant starch is both higher than those of Semen coicis native starch and high-amylose maize starch. ^(13) C nuclear magnetic resonance spectroscopy showed that Semen coicis native starch and high-amylose maize starch exhibited A-type crystal structures,while heat-moisture treated Semen coicis resistant starch displayed B-type crystal structures. The relative crystallinity of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch is 76.41,85.36,and 87.25,respectively,and the percentages of amorphous region are 5.78,4.72,and 4.39,respectively. Additionally,heat-moisture treated Semen coicis resistant starch could increase the proliferation of Bifidobacterium bifidum more than Semen coicis native starch or high-amylose maize starch. Bifidobacterium bifidum displayed a higher tolerance under simulated gastrointestinal tract conditions such as low p H,bile acid,pepsin,and trypsin in heat-moisture treated Semen coicis resistant starch medium than in Semen coicis native starch or high-amylose maize starch media.
基金the National Natural Science Foundation of China(No.31772622)National Natural Science Foundation of China(No.32072748)Doctoral Fellowship from Henan Agricultural University(No.0501182)。
文摘Background:Escherichia coli(E.coli)infection in humans and animals usually comes with gut dysbiosis,which is potential culprit to skeletal health,it is still unclear to whether diet interfered gut microbiome changes can be a protective strategy to bone loss development.Here,the effects of resistant starch from raw potato starch(RPS),a type of prebiotic,on E.coli-induced bone loss and gut microbial composition in meat ducks were evaluated.Results:The results showed that dietary 12%RPS treatment improved bone quality,depressed bone resorption,and attenuated the pro-inflammatory reaction in both ileum and bone marrow.Meanwhile,the 12%RPS diet also increased the abundance of Firmicutes in E.coli-treated birds,along with higher production of short-chain fatty acids(SCFAs)especially propionate and butyrate.Whereas addition ofβ-acid,an inhibitor of bacterial SCFAs production,to the drinking water of ducks fed 12%RPS diet significantly decreased SCFAs level in cecum content and eliminated RPS-induced tibial mass improvement.Further,treatment with MI-2 to abrogate mucosa-associated lymphoid tissue lymphoma translocation protein 1(Malt1)activity replicated the protective role of dietary 12%RPS in E.coli-induced bone loss including reduced the inhibition on nuclear factorκB(NF-κB)inflammasome activation,decreased bone resorption,and improved bone quality,which were correlated with comparable and higher regulatory T cells(Treg)frequency in MI-2 and 12%RPS group,respectively.Conclusions:These findings suggested that the diet with 12%RPS could alleviate E.coli-induced bone loss in meat ducks by changing the gut microbial composition and promoting concomitant SCFAs production,and consequently inhibiting Malt1/NF-κB inflammasome activation and Treg cells expansion.
基金Supported by the Project for the Scientific and Technological Innovation Team of the Outstanding Middle-aged and Young of Hubei Provincial Institution of Higher Learning(T201619)the Project for the Scientific and Technological Innovation Team of Huanggang Normal University(201613303)
文摘Using 'Luotian chestnut' as the raw material, the content changes of resistant starch and main nutrients in the processed fruit were studied after taken common processing of high-temperature steaming of canned food, sand-mixed frying and cooking without shells, with the aim to find out the effects of different processing methods on the content changes of nutrients in chestnuts. The result showed that there were significant differences in the resistant starch contents by different processing methods. After processing, the retention degree of resistant starch was the lowest using the methods of sand-mixed frying, of 42.42%, while the highest was found in canned chestnut products, of 93.16%. Among the main nutrients, adding water and sugar would reduce content of resistant starch, while increasing the protein content would promote the retention of resistant starch retention. The changes in lipid content had no effect or not a single promoting or weakening effects on the content of resistant starch.
文摘This is a review on resistant starch(RS),resistant dextrin(RD),and polydextrose(PDX),focusing on their similarities and differences.RS refers to the starch(or a portion of)that cannot be digested in the small intestine,but can be partially fermented in the colon.The enzyme resistance of RS is mainly due to either its crystalline/granular structure or its interaction with other components.RD is produced by pyrodextrinization of starch,while PDX is produced by polycondensation of glucose and sorbitol.Both RD and PDX contain glycosidic linkages that are not digestible by the enzymes in the small intestine.RS is not soluble in water,whereas RD and PDX are soluble,mainly due to their molecular structures and other structural features.The major health benefits of RS,RD,and PDX are quite similar,including gut health,prebiotic effects,glycemic control,weight management,and prevention of cardiovascular disease.However,the efficacies can be different among them,for example,the degree and rate of gut fermentation.This review compares the definitions,functional properties,and health benefits of RS,RD,and PDX with the underlying mechanisms,which can be useful for their incorporation in food formulations to improve human health and wellness.
文摘Resistant starch from plantain(Macho Musa paradisiaca L.)and banana(Roatan Musa sapientum L.)varieties was chemically modified by crosslinking using epichlorohydrin(EPI).These modified starches were subjected to in vitro digestibility studies using the Englyst method to determine the content of rapidly digestible starch(RDS),slowly digestible starch(SDS)and resistant starch(RS).The thermal stability of these crosslinked starches was evaluated by gelatinization and retrogradation analyses,and their enthalpies were determined using differential scanning calorimetry(DSC).Additionally,their functional properties were evaluated.Chemical modification with EPI significantly increased the RS content in both starch varieties compared to that in native starch.The enthalpy and gelatinization temperature decreased in the EPI-modified starches of both varieties,indicating lower thermal stability during the gelatinization process compared to that of native starch.In general,both varieties of crosslinked plantain starch had lower viscosity(0.43 Pa^(*)s)than did native starch(0.58 Pa^(*)s).The results indicates that this starch crosslinked with EPI constitutes an alternative for use in food for people with health problems such as high cholesterol levels or postprandial insulin concentrations.
基金supported by the Major Program of National Agricultural Science and Technology of China(NK20220607)the Sichuan Science and Technology Program,China(2023YFH0041)。
文摘Starch biosynthesis is a complex process that relies on the coordinated action of multiple enzymes.Resistant starch is not digested in the small intestine,thus preventing a rapid rise in the glycemic index.Starch synthase 2a(SS2a)is a key enzyme in amylopectin biosynthesis that has significant effects on starch structure and properties.In this study,we identified an ss2a null mutant(M3-1413)with a single base mutation from an ethyl methane sulfonate(EMS)-mutagenized population of barley.The mutation was located at the 3'end of the first intron of the RNA splicing receptor(AG)site,and resulted in abnormal RNA splicing and two abnormal transcripts of ss2a,which caused the inactivation of the SS2a gene.The starch structure and properties were significantly altered in the mutant,with M3-1413 containing lower total starch and higher amylose and resistant starch levels.This study sheds light on the effect of barley ss2a null mutations on starch properties and will help to guide new applications of barley starch in the development of nutritious food products.
基金This work is supported by grants from the National Key R&D Program of China(2021YFF1000202)the Chinese Academy of Science(XDA24030504).
文摘Resistant starch(RS),a healthy dietary fiber,is a particular type of starch that has attracted much research attention in recent years.RS has important roles in reducing glycemic index,postprandial blood glucose levels,and serum cholesterol levels,thereby improving and preventing many diseases,such as diabetes,obesity,and cardiovascular disease.The formation of RS is influenced by intrinsic properties of starch(e.g.,starch granule structure,starch crystal structure,and amylose-to-amylopectin ratio)and non-starch components(e.g.,proteins,lipids,and sugars),aswell as storage and processing conditions.Recent studies have revealed that several starch-synthesis-related genes(SSRGs)are crucial for the formation of RS during seed development.Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content,suggesting their potential roles in RS formation.This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
文摘The immediate post-weaning period poses a major challenge on the survival of piglets. Similarly, newly hatched chicks face life threatening challenges due to enteric infections. In the past several years, in-feed antibiotics have been used to reduce these production problems and improve growth. However, in-feed antibiotics have been banned in many jurisdictions and therefore the most effective alternatives to infeed antibiotics must be developed. To date, several studies have been conducted to develop alternatives to antibiotics. One of the potential candidates as alternatives to in-feed antibiotics is resistant starch(RS). Resistance starch is a type of starch that resists enzymatic digestion in the upper parts of the gastrointestinal tract and therefore passes to hindgut where it can be fermented by resident microorganisms. Microbial fermentation of RS in the hindgut results in the production of short chain fatty acids(SCFA). Production of SCFA in turn results in growth and proliferation of colonic and cecal cells, increased expression of genes involved in gut development, and creation of an acidic environment. The acidic environment suppresses the growth of pathogenic microorganisms while selectively promoting the growth of beneficial microbes. Thus, RS has the potential to improve gut health and function by modifying and stabilising gut microbial community and by improving the immunological status of the host. In this review, we discussed the roles of RS in modifying and stabilising gut microbiota, gut health and function, carcass quality, and energy metabolism and growth performance in pigs and poultry.
基金supported by grants from National Key Basic Research Program of China (2013CB127300)National Natural Science Foundation of China (31430082)Natural Science Foundation of Jiangsu Province (BK20130058)
文摘High-protein diet could cause an increase in protein fermentation in the large intestine, leading to an increased production of potentially detrimental metabolites. We hypothesized that an increase in corn resistant starch content may attenuate the protein fermentation. The aim of this study was to evaluate the effect of resistant starch on protein fermentation by inocula from large intestine of pigs using in vitro cultivation. Fermentation patterns were analyzed during a 24-h incubation of cecal and colonic digesta with varying corn resistant starch contents, using casein protein as sole nitrogen source. The results showed that the concentration of short-chain fatty acids(SCFA) and cumulative gas production were significantly increased(P < 0.05), while ammonia-nitrogen(NH_3-N) and branched-chain fatty acids(BCFA), which indicated protein fermentation, decreased when the corn resistant starch levels increased(P < 0.05). The copies of total bacteria, Bifidobacterium and Lactobacillus were significantly increased with the increased corn resistant starch levels after incubation(P < 0.05). The copies of the Bifidobacterium and Lactobacillus in cecum were significantly higher than those in colon(P < 0.05). We conclude that the addition of corn resistant starch weakens the protein fermentation by influencing microbial population and reducing protein fermentation in the cecum and colon in vitro.
基金funded by the Nichirei corporation,Okinawa Institute of Science and Technology Graduate University,JSPS KAKENHI(grant number JP20K19722)。
文摘Background and Objectives:Few studies exist on resistant starch in rice grains.The Okinawa Institute of Science and Technology Graduate University(OIST)has developed a new rice(OIST rice,OR)rich in resistant starch.This study aimed to clarify the effect of OR on postprandial glucose concentrations.Methods and Study Design:This single-center,open,randomized,crossover comparative study included 17 patients with type 2 diabetes.All participants completed two meal tolerance tests using OR and white rice(WR).Results:The median age of the participants was 70.0[59.0-73.0]years,and the mean body mass index was 25.9±3.1 kg/m^(2).The difference in total area under the curve(AUC)of plasma glucose was-8223(95%confidence interval[CI]:-10100 to-6346,p<0.001)mg·min/dL.The postprandial plasma glucose was significantly lower with OR than with WR.The difference in the AUC of insulin was-1139(95%CI:-1839 to-438,p=0.004)μU·min/mL.The difference in the AUC of total gastric inhibitory peptide(GIP)and total glucagon-like peptide-1(GLP-1)was-4886(95%CI:-8456 to-1317,p=0.011)and-171(95%CI:-1034 to 691,p=0.673)pmol·min/L,respectively.Conclusions:OR can be ingested as rice grains and significantly reduced postprandial plasma glucose compared to WR independent of insulin secretion in patients with type 2 diabetes.OR could have escaped absorption not only from the upper small intestine but also from the lower small intestine.