期刊文献+
共找到4,556篇文章
< 1 2 228 >
每页显示 20 50 100
SA-ResNet:An Intrusion Detection Method Based on Spatial Attention Mechanism and Residual Neural Network Fusion
1
作者 Zengyu Cai Yuming Dai +1 位作者 Jianwei Zhang Yuan Feng 《Computers, Materials & Continua》 2025年第5期3335-3350,共16页
The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic,highlighting the growing importance of network security.Intrusion Detection Systems(IDS)are essential ... The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic,highlighting the growing importance of network security.Intrusion Detection Systems(IDS)are essential for safeguarding network integrity.To address the low accuracy of existing intrusion detection models in identifying network attacks,this paper proposes an intrusion detection method based on the fusion of Spatial Attention mechanism and Residual Neural Network(SA-ResNet).Utilizing residual connections can effectively capture local features in the data;by introducing a spatial attention mechanism,the global dependency relationships of intrusion features can be extracted,enhancing the intrusion recognition model’s focus on the global features of intrusions,and effectively improving the accuracy of intrusion recognition.The proposed model in this paper was experimentally verified on theNSL-KDD dataset.The experimental results showthat the intrusion recognition accuracy of the intrusion detection method based on SA-ResNet has reached 99.86%,and its overall accuracy is 0.41% higher than that of traditional Convolutional Neural Network(CNN)models. 展开更多
关键词 Intrusion detection deep learning residual neural network spatial attention mechanism
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
2
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
Prediction of RNA m6A Methylation Sites in Multiple Tissues Based on Dual-branch Residual Network
3
作者 GUO Xiao-Tian GAO Wei +2 位作者 CHEN Dan LI Hui-Min TAN Xue-Wen 《生物化学与生物物理进展》 北大核心 2025年第11期2900-2915,共16页
Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated ... Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated in diverse pathological conditions.Accurate prediction of m6A sites is critical for elucidating their regulatory mechanisms and informing drug development.However,traditional experimental methods are time-consuming and costly.Although various computational approaches have been proposed,challenges remain in feature learning,predictive accuracy,and generalization.Here,we present m6A-PSRA,a dual-branch residual-network-based predictor that fully exploits RNA sequence information to enhance prediction performance and model generalization.Methods m6A-PSRA adopts a parallel dual-branch network architecture to comprehensively extract RNA sequence features via two independent pathways.The first branch applies one-hot encoding to transform the RNA sequence into a numerical matrix while strictly preserving positional information and sequence continuity.This ensures that the biological context conveyed by nucleotide order is retained.A bidirectional long short-term memory network(BiLSTM)then processes the encoded matrix,capturing both forward and backward dependencies between bases to resolve contextual correlations.The second branch employs a k-mer tokenization strategy(k=3),decomposing the sequence into overlapping 3-mer subsequences to capture local sequence patterns.A pre-trained Doc2vec model maps these subsequences into fixeddimensional vectors,reducing feature dimensionality while extracting latent global semantic information via context learning.Both branches integrate residual networks(ResNet)and a self-attention mechanism:ResNet mitigates vanishing gradients through skip connections,preserving feature integrity,while self-attention adaptively assigns weights to focus on sequence regions most relevant to methylation prediction.This synergy enhances both feature learning and generalization capability.Results Across 11 tissues from humans,mice,and rats,m6A-PSRA consistently outperformed existing methods in accuracy(ACC)and area under the curve(AUC),achieving>90%ACC and>95%AUC in every tissue tested,indicating strong cross-species and cross-tissue adaptability.Validation on independent datasets—including three human cell lines(MOLM1,HEK293,A549)and a long-sequence dataset(m6A_IND,1001 nt)—confirmed stable performance across varied biological contexts and sequence lengths.Ablation studies demonstrated that the dual-branch architecture,residual network,and self-attention mechanism each contribute critically to performance,with their combination reducing interference between pathways.Motif analysis revealed an enrichment of m6A sites in guanine(G)and cytosine(C),consistent with known regulatory patterns,supporting the model’s biological plausibility.Conclusion m6A-PSRA effectively captures RNA sequence features,achieving high prediction accuracy and robust generalization across tissues and species,providing an efficient computational tool for m6A methylation site prediction. 展开更多
关键词 N6-methyladenosine site Doc2vec BiLSTM dual-branch residual network self-attention
原文传递
DFNet: A Differential Feature-Incorporated Residual Network for Image Recognition
4
作者 Pengxing Cai Yu Zhang +2 位作者 Houtian He Zhenyu Lei Shangce Gao 《Journal of Bionic Engineering》 2025年第2期931-944,共14页
Residual neural network (ResNet) is a powerful neural network architecture that has proven to be excellent in extracting spatial and channel-wise information of images. ResNet employs a residual learning strategy that... Residual neural network (ResNet) is a powerful neural network architecture that has proven to be excellent in extracting spatial and channel-wise information of images. ResNet employs a residual learning strategy that maps inputs directly to outputs, making it less difficult to optimize. In this paper, we incorporate differential information into the original residual block to improve the representative ability of the ResNet, allowing the modified network to capture more complex and metaphysical features. The proposed DFNet preserves the features after each convolutional operation in the residual block, and combines the feature maps of different levels of abstraction through the differential information. To verify the effectiveness of DFNet on image recognition, we select six distinct classification datasets. The experimental results show that our proposed DFNet has better performance and generalization ability than other state-of-the-art variants of ResNet in terms of classification accuracy and other statistical analysis. 展开更多
关键词 Deep learning residual neural network Pattern recognition residual block Differential feature
在线阅读 下载PDF
Multi-Head Attention Enhanced Parallel Dilated Convolution and Residual Learning for Network Traffic Anomaly Detection
5
作者 Guorong Qi Jian Mao +2 位作者 Kai Huang Zhengxian You Jinliang Lin 《Computers, Materials & Continua》 2025年第2期2159-2176,共18页
Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract loc... Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance. 展开更多
关键词 network traffic anomaly detection multi-head attention parallel dilated convolution residual learning
在线阅读 下载PDF
Residual-enhanced graph convolutional networks with hypersphere mapping for anomaly detection in attributed networks
6
作者 Wasim Khan Afsaruddin Mohd +3 位作者 Mohammad Suaib Mohammad Ishrat Anwar Ahamed Shaikh Syed Mohd Faisal 《Data Science and Management》 2025年第2期137-146,共10页
In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study in... In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study introduces an innovative approach that synergizes the strengths of graph convolutional networks with advanced deep residual learning and a unique residual-based attention mechanism,thereby creating a more nuanced and efficient method for anomaly detection in complex networks.The heart of our model lies in the integration of graph convolutional networks that capture complex structural relationships within the network data.This is further bolstered by deep residual learning,which is employed to model intricate nonlinear connections directly from input data.A pivotal innovation in our approach is the incorporation of a residual-based attention mech-anism.This mechanism dynamically adjusts the importance of nodes based on their residual information,thereby significantly enhancing the sensitivity of the model to subtle anomalies.Furthermore,we introduce a novel hypersphere mapping technique in the latent space to distinctly separate normal and anomalous data.This mapping is the key to our model’s ability to pinpoint anomalies with greater precision.An extensive experimental setup was used to validate the efficacy of the proposed model.Using attributed social network datasets,we demonstrate that our model not only competes with but also surpasses existing state-of-the-art methods in anomaly detection.The results show the exceptional capability of our model to handle the multifaceted nature of real-world networks. 展开更多
关键词 Anomaly detection Deep learning Hypersphere learning residual modeling Graph convolution network Attention mechanism
在线阅读 下载PDF
A Modified Deep Residual-Convolutional Neural Network for Accurate Imputation of Missing Data
7
作者 Firdaus Firdaus Siti Nurmaini +8 位作者 Anggun Islami Annisa Darmawahyuni Ade Iriani Sapitri Muhammad Naufal Rachmatullah Bambang Tutuko Akhiar Wista Arum Muhammad Irfan Karim Yultrien Yultrien Ramadhana Noor Salassa Wandya 《Computers, Materials & Continua》 2025年第2期3419-3441,共23页
Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attentio... Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated the model on publicly available datasets, including Medical Information Mart for Intensive Care (MIMIC-III and MIMIC-IV), which contain critical care patient data, and the Beijing Multi-Site Air Quality dataset, which measures environmental air quality. The proposed DRes-CNN method achieved a root mean square error (RMSE) of 0.00006, highlighting its high accuracy and robustness. We also compared with Low Light-Convolutional Neural Network (LL-CNN) and U-Net methods, which had RMSE values of 0.00075 and 0.00073, respectively. This represented an improvement of approximately 92% over LL-CNN and 91% over U-Net. The results showed that this DRes-CNN-based imputation method outperforms current state-of-the-art models. These results established DRes-CNN as a reliable solution for addressing missing data. 展开更多
关键词 Data imputation missing data deep learning deep residual convolutional neural network
在线阅读 下载PDF
VW-PINNs:A volume weighting method for PDE residuals in physics-informed neural networks
8
作者 Jiahao Song Wenbo Cao +1 位作者 Fei Liao Weiwei Zhang 《Acta Mechanica Sinica》 2025年第3期65-79,共15页
Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calcu... Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calculating the PDE loss at a set of collocation points,providing advantages such as meshfree and more convenient adaptive sampling.However,when solving PDEs using nonuniform collocation points,PINNs still face challenge regarding inefficient convergence of PDE residuals or even failure.In this work,we first analyze the ill-conditioning of the PDE loss in PINNs under nonuniform collocation points.To address the issue,we define volume weighting residual and propose volume weighting physics-informed neural networks(VW-PINNs).Through weighting the PDE residuals by the volume that the collocation points occupy within the computational domain,we embed explicitly the distribution characteristics of collocation points in the loss evaluation.The fast and sufficient convergence of the PDE residuals for the problems involving nonuniform collocation points is guaranteed.Considering the meshfree characteristics of VW-PINNs,we also develop a volume approximation algorithm based on kernel density estimation to calculate the volume of the collocation points.We validate the universality of VW-PINNs by solving the forward problems involving flow over a circular cylinder and flow over the NACA0012 airfoil under different inflow conditions,where conventional PINNs fail.By solving the Burgers’equation,we verify that VW-PINNs can enhance the efficiency of existing the adaptive sampling method in solving the forward problem by three times,and can reduce the relative L 2 error of conventional PINNs in solving the inverse problem by more than one order of magnitude. 展开更多
关键词 Physics-informed neural networks Partial differential equations Nonuniform sampling residual balancing Deep learning
原文传递
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
9
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(CNN).
在线阅读 下载PDF
Geomagnetic Data Denoising Based on Deep Residual Shrinkage Network
10
作者 Zhang Bin Yang Chao +2 位作者 Zheng Hao-Hao Yan Jia-Yong Ma Chang-Ying 《Applied Geophysics》 2025年第3期820-834,897,共16页
Geomagnetic data hold significant value in fields such as earthquake monitoring and deep earth exploration.However,the increasing severity of anthropogenic noise contamination in existing geomagnetic observatory data ... Geomagnetic data hold significant value in fields such as earthquake monitoring and deep earth exploration.However,the increasing severity of anthropogenic noise contamination in existing geomagnetic observatory data poses substantial challenges to high-precision computational analysis of geomagnetic data.To overcome this problem,we propose a denoising method for geomagnetic data based on the Residual Shrinkage Network(RSN).We construct a sample library of simulated and measured geomagnetic data develop and train the RSN denoising network.Through its unique soft thresholding module,RSN adaptively learns and removes noise from the data,effectively improving data quality.In experiments with noise-added measured data,RSN enhances the quality of the noisy data by approximately 12 dB on average.The proposed method is further validated through denoising analysis on measured data by comparing results of time-domain sequences,multiple square coherence and geomagnetic transfer functions. 展开更多
关键词 residual shrinkage network(RSN) signal processing geomagnetic signal denoising electromagnetic exploration deep learning(DL)
在线阅读 下载PDF
VMD-小波去噪与双线性ResNet结合坐标注意力机制的水声信号调制识别方法 被引量:1
11
作者 周锋 韦少帅 乔钢 《哈尔滨工程大学学报》 北大核心 2025年第7期1357-1366,共10页
针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关... 针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关性模态分量含有的有效信息;运用双线性ResNet18使网络具备捕获区分性强的局部信息;引入坐标注意力机制,使网络不仅能关注通道信息也能关注图像的空间信息。仿真结果表明:本文降噪方法相关系数更高、均方根误差均降低了20%;以0 dB条件为例,本文改进网络准确率相比于ResNet提升了8%,7种调制信号都达到了95%以上,调相调制准确率也达到了90%。 展开更多
关键词 水声通信 调制识别 残差网络 去噪 双线性模型 注意力机制 神经网络 变分模态
在线阅读 下载PDF
基于改进SE-ResNet50的激光雷达晴空湍流识别研究
12
作者 庄子波 陈珺 +3 位作者 何沛林 张红颖 靳国华 罗雄 《雷达学报(中英文)》 北大核心 2025年第3期629-640,共12页
针对机场低空区域采用激光雷达进行湍流识别时识别率低的问题,提出了使用一种改进50层挤压激励残差网络(SE-ResNet50)的晴空湍流识别方法。通过引入挤压激励模块,改进网络结构,降低了模型对特征定位的过度敏感,使网络在学习过程中选择... 针对机场低空区域采用激光雷达进行湍流识别时识别率低的问题,提出了使用一种改进50层挤压激励残差网络(SE-ResNet50)的晴空湍流识别方法。通过引入挤压激励模块,改进网络结构,降低了模型对特征定位的过度敏感,使网络在学习过程中选择性地突出有用的信息特征;以兰州中川国际机场的实测数据建立了样本数据集,依据湍流分类等级抽取弱、中、强3类等量颠簸数据建立平衡数据集进行模型训练。在相同的实验条件下,与卷积神经网络、MobileNetV2和ShuffleNetV1网络相比,改进SE-ResNet50的识别准确率分别提高了7.44%,6.52%和4.11%,对比各个模型生成的混淆矩阵,表明该文方法的准确率达到了95%,验证了所提方法的可行性。 展开更多
关键词 激光雷达 涡流耗散率(EDR) 晴空湍流 残差网络(resnet) 深度学习
在线阅读 下载PDF
基于BiLSTM-AM-ResNet组合模型的山西焦煤价格预测 被引量:1
13
作者 樊园杰 睢祎平 张磊 《中国煤炭》 北大核心 2025年第3期42-51,共10页
煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题... 煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题,以山西焦煤价格为研究对象,分析影响煤炭价格的多种因素,并利用先进的人工智能机器学习算法来解决煤价预测问题。综合双向长短期记忆网络、注意力机制和残差神经网络的优势,构建双向长短期残差神经网络(BiLSTM-AM-ResNet)进行山西焦煤价格预测实验。采集2012-2023年的山西焦煤价格周度数据作为实验数据,对其进行空缺值处理和归一化处理,绘制相关系数热图并确定模型输入特征类型,进而简化模型并提高预测准确率与预测速度。通过模型预测实验得出,经BiLSTM-AM-ResNet模型预测的山西焦煤价格与实际煤价的发展趋势有着较高的线性拟合性,且预测结果与真实煤价在数值上非常接近,预测准确率达到了95.08%。 展开更多
关键词 焦煤价格预测 长短期记忆网络 注意力机制 残差神经网络 相关性分析
在线阅读 下载PDF
基于改进ResNet的机场鸟类识别方法 被引量:1
14
作者 孔建国 赵志伟 +1 位作者 张向伟 梁海军 《电子设计工程》 2025年第5期172-177,共6页
针对机场鸟类识别过程中存在识别难度较大、准确率较低等问题,该文提出了一种改进ResNet的SA-ResNet(SPDConv and Attention-ResNet)模型。模型采用空间到深度卷积(SPDConv)替换ResNet18中的跨步卷积层,避免信息的过度丢失,增强模型特... 针对机场鸟类识别过程中存在识别难度较大、准确率较低等问题,该文提出了一种改进ResNet的SA-ResNet(SPDConv and Attention-ResNet)模型。模型采用空间到深度卷积(SPDConv)替换ResNet18中的跨步卷积层,避免信息的过度丢失,增强模型特征提取能力;使用高效通道注意力(ECA)改进卷积块注意力模块(CBAM),并提出高效卷积块注意力模块(ECBAM)进一步提高模型识别准确率。通过自建的ADB-20机场鸟类数据集验证表明,SA-ResNet模型的准确率达到了95.9%,能够很好地识别机场鸟类,为机场开展鸟击防范工作奠定基础。 展开更多
关键词 鸟类识别 残差网络 注意力机制 深度学习
在线阅读 下载PDF
一种基于DN-ResNet11的语音情感识别算法
15
作者 应娜 邹雨鉴 +3 位作者 杨雪滢 孙文胜 叶学义 蒋银河 《电信科学》 北大核心 2025年第6期139-153,共15页
为解决网络训练复杂度高的问题并改进语音情感特征提取,提出了基于双嵌套残差网络(DNResNet11)与通道注意残差网络(CRNet)的双支路特征提取模型。首先,设计了低复杂度的DN-ResNet11以高效提取语谱图的融合情感特征,提升情感识别率;然后... 为解决网络训练复杂度高的问题并改进语音情感特征提取,提出了基于双嵌套残差网络(DNResNet11)与通道注意残差网络(CRNet)的双支路特征提取模型。首先,设计了低复杂度的DN-ResNet11以高效提取语谱图的融合情感特征,提升情感识别率;然后,结合多尺度引导滤波和局部二值模式(local binary pattern,LBP)算法对语谱图进行细节增强;最后,融合两组特征进行情感分类,形成双支路加权融合模型(weighted fusion model based on dual nested residual and channel residual network,WFDN_CRNet),进一步提升情感表征能力。在CASIA、EMO-DB、IEMOCAP等语音情感数据集上情感识别率分别达到94.58%、85.59%、65.72%,所提方法在情感识别率优于ResNet18等基准方法的同时,显著降低了计算成本,验证了模型的有效性。 展开更多
关键词 情感识别 双嵌套残差网络 细节增强 加权融合
在线阅读 下载PDF
新工科背景下基于ResNet的机械设计教学机器人设计研究
16
作者 郑默思 张亮 《自动化与仪器仪表》 2025年第8期143-147,共5页
为提高机械设计教学机器人对目标的自动抓取成功率,设计了一套基于改进ResNet101网络的机械设计教学机器人目标自动抓取系统。首先根据系统需求,将系统总体框架分为图像采集模块、目标检测模块、机器人自动抓取模块;然后从抓取工具、机... 为提高机械设计教学机器人对目标的自动抓取成功率,设计了一套基于改进ResNet101网络的机械设计教学机器人目标自动抓取系统。首先根据系统需求,将系统总体框架分为图像采集模块、目标检测模块、机器人自动抓取模块;然后从抓取工具、机器人、双目视觉相机方面,对系统硬件新型选型;接着对系统软件进行设计,并着重设计了机器人目标自动抓取算法,采用引入金字塔池化卷积组和网络剪枝的改进ResNet网络,对机器人目标进行检测;最后通过仿真对系统进行了验证。结果表明,改进ResNet网络对机器人目标检测的准确率为96.38%,平均绝对误差为1.58%;本系统在82次抓取测试中,仅存在1次目标自动抓取失败的情况,抓取成功率为98.78%。由此得出,本系统具有较高的目标自动抓取成功率,满足实际应用需求。 展开更多
关键词 机器人 自动抓取 目标检测 resnet网络 注意力机制 网络剪枝
原文传递
基于ReGAT-ResNet的电气线路超温三诱因识别方法研究
17
作者 李利 王昊舟 +1 位作者 潘红光 石珂珂 《消防科学与技术》 北大核心 2025年第10期1495-1501,共7页
当电气线路中出现过载、谐波以及非周期电流等异常工况时,极易导致线路温度异常升高,进而引发电气火灾。快速、准确地识别这些超温诱因,是提升电气火灾预警准确率、保障消防安全的关键。本文提出了一种基于递归图-图注意力机制与残差网... 当电气线路中出现过载、谐波以及非周期电流等异常工况时,极易导致线路温度异常升高,进而引发电气火灾。快速、准确地识别这些超温诱因,是提升电气火灾预警准确率、保障消防安全的关键。本文提出了一种基于递归图-图注意力机制与残差网络(ReGAT-ResNet)的电气线路超温诱因识别方法,利用超温诱因电流信号的时序依赖性,通过相空间重构将其映射为高维轨迹,并结合递归图方法提取时间动态结构特征,引入图神经网络对图结构数据进行建模,构建了三层图注意力网络(GAT),并通过引入残差连接机制增强了深层特征的稳定传播与融合能力,同时使用全局平均池化与全连接层实现分类预测。利用不同工况下的过载、谐波以及非周期电流试验数据集进行验证和分析,试验结果表明,该模型的诱因识别准确率为99.57%,可为电气火灾的早期预警与消防风险防控提供有效的技术支撑。 展开更多
关键词 超温诱因 诱因识别 递归图 图注意力 残差网络 电气线路
在线阅读 下载PDF
基于ResNet-MHAM模型的山区耕地土壤有机质含量高光谱反演 被引量:3
18
作者 吴建高 汪泓 +3 位作者 张磊 杨隆珊 彭俊杰 龚明冲 《环境科学》 北大核心 2025年第4期2313-2324,共12页
针对贵州喀斯特山区耕地土壤有机质(SOM)含量高光谱遥感预测的精度和泛化能力不足的问题,提出了结合残差网络(ResNet)和多头注意力机制(MHAM)的一维高光谱反射数据模型(ResNet-MHAM).首先,采集贵州13个县市区188个土壤样品并检测光谱信... 针对贵州喀斯特山区耕地土壤有机质(SOM)含量高光谱遥感预测的精度和泛化能力不足的问题,提出了结合残差网络(ResNet)和多头注意力机制(MHAM)的一维高光谱反射数据模型(ResNet-MHAM).首先,采集贵州13个县市区188个土壤样品并检测光谱信息;其次,基于不同层数(34、50、101和152层)的ResNet结构并结合MHAM进行优化构建模型;最后,使用30%的数据集和十折交叉验证进行模型验证.实验结果显示,50层ResNet结构与MHAM的结合模型,在决定系数(R2)达到0.9172,均方根误差(RMSE)为7.4549 g·kg^(−1),表现出优于BPNN、SVM、PLSR、GPR和RF模型的准确性和泛化能力.研究结果为贵州山区SOM含量的高光谱预测提供了新的有效方法. 展开更多
关键词 高光谱 残差网络(resnet) 多头注意力机制(MHAM) 土壤有机质(SOM) 山区耕地
原文传递
Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network 被引量:2
19
作者 Arnab Dey Samit Biswas Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2024年第5期3067-3087,共21页
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i... Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis. 展开更多
关键词 Workout action recognition video stream action recognition residual network GRU ATTENTION
在线阅读 下载PDF
基于RA-CNN与ResNet的安卓恶意应用检测
20
作者 华漫 刘小亮 《计算机与现代化》 2025年第7期28-32,42,68,共7页
近年来,基于字节码图像与深度学习的安卓恶意软件检测方法日益流行,但这类方法存在特征提取受限,对噪声数据敏感的问题。针对这一问题,本文提出一种融合残差网络(ResNet)与递归注意力卷积神经网络(RA-CNN)的检测方法。该方法首先从软件... 近年来,基于字节码图像与深度学习的安卓恶意软件检测方法日益流行,但这类方法存在特征提取受限,对噪声数据敏感的问题。针对这一问题,本文提出一种融合残差网络(ResNet)与递归注意力卷积神经网络(RA-CNN)的检测方法。该方法首先从软件样本中提取DEX、XML与ARSC这3种字节码文件并将其映射为RGB图像,而后利用嵌入残差结构的卷积神经网络进行特征抽象与提取,随之注意力建议子网络(APN)以特征图作为参考从粗到细迭代地生成局部区域注意力,而更精细的尺度网络以循环的方式从之前的尺度中放大被关注的区域作为下一尺度的输入,通过多尺度学习后实现分类。实验表明,与类似的基于字节码图像方法相比,该方法在多种指标上均有所提升,准确率达到了98.28%。 展开更多
关键词 递归注意力网络 残差网络 XML文件 ARSC文件 字节码图像
在线阅读 下载PDF
上一页 1 2 228 下一页 到第
使用帮助 返回顶部