As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir char...As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel efficiency and robustness of the proposed method by applying it to million-cell benchmark problems.展开更多
Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques desig...Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability.展开更多
The J oilfield in the Bohai has a long development history and has undergone comprehensive adjustment measures,including water injection and polymer injection.Following these adjustments,the injection and production w...The J oilfield in the Bohai has a long development history and has undergone comprehensive adjustment measures,including water injection and polymer injection.Following these adjustments,the injection and production well network now features coexistence of both polymer injection wells and water injection wells,which has negatively impacted production dynamics.Firstly,based on the adjusted reservoir well network in the J oilfield,a representative water-polymer co-injection well network was established.Subsequently,a numerical simulation model of this typical reservoir unit was developed using reservoir numerical simulation methods to confirm the interference issues associated with water-polymer co-injection.Multiple reservoir numerical simulation models were designed to investigate various factors influencing water-polymer interference,resulting in graphical representations of each factor’s impact under different conditions.Finally,gray relational analysis was employed to rank the influence of these factors,yielding the following order of significance:polymer concentration,the ratio of drainage distance to well spacing,horizontal permeability variation,interlayer permeability variation,and intralayer permeability variation.This understanding provides robust guidance for future adjustments in the oilfield.展开更多
The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility...The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility.This study focuses on a real fractured oil field that requires urgent production operations to reduce the producing GOR.In this study,the static model for the field was developed using commercial software,involving steps such as data collection,fault modeling,meshing,and statistical analysis to prepare for dynamic simulation.The dynamic model incorporates geometry,gridding,and rock properties from the static model,utilizing a dual-porosity approach for the naturally fractured reservoir and the Peng-Robinson equation for fluid phase behavior.Initial reservoir conditions,production history,and rock-fluid interactions were defined,with relative permeability curves indicating a water-wet reservoir and low critical gas saturation affecting the GOR.To better understand the relationship between reservoir and production parameters,a detailed sensitivity analysis was performed using the Response Surface Methodology(RSM).Following the sensitivity analysis,a history matching process was conducted using the Designed Exploration and Controlled Evolution(DECE)optimizer to validate the model for future forecasts.Six operational scenarios were defined to decrease the production GOR and enhance final recovery from the field.The results indicate that the water injection scenario is effective in preventing the GOR increase by maintaining reservoir pressure,thereby sustaining production over a longer period.This scenario also improves oil recovery by approximately 6%compared to the base case.Finally,optimization was carried out using the DECE optimizer for each scenario to fine-tune the operational parameters.The goal was to maximize oil revenue for each scenario during the optimization process.This study stands out as one of the few that provides a comprehensive analysis of production behavior and development planning for a real fractured reservoir with high producing GOR.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
We study CO_(2) injection into a saline aquifer intersected by a tectonic fault using a coupled modeling approach to evaluate potential geomechanical risks.The simulation approach integrates the reservoir and mechanic...We study CO_(2) injection into a saline aquifer intersected by a tectonic fault using a coupled modeling approach to evaluate potential geomechanical risks.The simulation approach integrates the reservoir and mechanical simulators through a data transfer algorithm.MUFITS simulates non-isothermal multiphase flow in the reservoir,while FLAC3D calculates its mechanical equilibrium state.We accurately describe the tectonic fault,which consists of damage and core zones,and derive novel analytical closure relations governing the permeability alteration in the fault zone.We estimate the permeability of the activated fracture network in the damage zone and calculate the permeability of the main crack in the fault core,which opens on asperities due to slip.The coupled model is applied to simulate CO_(2) injection into synthetic and realistic reservoirs.In the synthetic reservoir model,we examine the impact of formation depth and initial tectonic stresses on geomechanical risks.Pronounced tectonic stresses lead to inelastic deformations in the fault zone.Regardless of the magnitude of tectonic stress,slip along the fault plane occurs,and the main crack in the fault core opens on asperities,causing CO_(2) leakage out of the storage aquifer.In the realistic reservoir model,we demonstrate that sufficiently high bottomhole pressure induces plastic deformations in the near-wellbore zone,interpreted as rock fracturing,without slippage along the fault plane.We perform a sensitivity analysis of the coupled model,varying the mechanical and flow properties of the storage layers and fault zone to assess fault stability and associated geomechanical risks.展开更多
Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)pl...Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)plume is crucial.This study focuses on four key parameters-permeability,porosity,formation pressure,and temperature-to characterize the reservoir and analyse the petrophysical and elastic response of CO_(2).First,we performed reservoir simulations to simulate CO_(2)saturation,using multiple sets of these four parameters to examine their significance on CO_(2)saturation and the plume migration speed.Subsequently,the effect of these parameters on the elastic properties is tested using rock physics theory.We established a relationship of compressional wave velocity(V_(p))and quality factor(Q_(p))with the four key parameters,and conducted a sensitivity analysis to test their sensitivity to V_(p) and Q_(p).Finally,we utilized visco-acoustic wave equation simulated time-lapse seismic data based on the computed V_(p) and Q_(p) models,and analysed the impact of CO_(2) saturation changes on seismic data.As for the above nu-merical simulations and analysis,we conducted sensitivity analysis using both homogeneous and heterogeneous models.Consistent results are found between homogeneous and heterogeneous models.The permeability is the most sensitive parameter to the CO_(2)saturation,while porosity emerges as the primary factor affecting both Q_(p) and V_(p).Both Q_(p) and V_(p) increase with the porosity,which contradicts the observations in gas reservoirs.The seismic simulations highlight significant variations in the seismic response to different parameters.We provided analysis for these observations,which serves as a valuable reference for comprehensive CO_(2)integrity analysis,time-lapse monitoring,injection planning and site selection.展开更多
During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face ...During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face challenges when dealing with rapidly changing reservoir conditions over time.Additionally,TC models struggle with complex,random noise primarily caused by measurement errors in production and injection rates.To address these challenges,this study introduces a dynamic capacitance(SV-DC)model based on state variables.By integrating the extended Kalman filter(EKF)algorithm,the SV-DC model provides more flexible predictions of inter-well connectivity and time-lag efficiency compared to the TC model.The robustness of the SV-DC model is verified by comparing relative errors between preset and calculated values through Monte Carlo simulations.Sensitivity analysis was performed to compare the model performance with the benchmark,using the Qinhuangdao Oilfield as a case study.The results show that the SV-DC model accurately predicts water breakthrough times.Increases in the liquid production index and water cut in two typical wells indicate the development time of ineffective circulation channels,further confirming the accuracy and reliability of the model.The SV-DC model offers significant advantages in addressing complex,dynamic oilfield production scenarios and serves as a valuable tool for the efficient and precise planning and management of future oilfield developments.展开更多
A mathematical model, fully coupling multiple porous media deformation and fluid flow, was established based on the elastic theory of porous media and fluid-solid coupling mechanism in tight oil reservoirs. The finite...A mathematical model, fully coupling multiple porous media deformation and fluid flow, was established based on the elastic theory of porous media and fluid-solid coupling mechanism in tight oil reservoirs. The finite element method was used to determine the numerical solution and the accuracy of the model was verified. On this basis, the model was used to simulate productivity of multistage fractured horizontal wells in tight oil reservoirs. The results show that during the production of tight oil wells, the reservoir region close to artificial fractures deteriorated in physical properties significantly, e.g. the aperture and conductivity of artificial fractures dropped by 52.12% and 89.02% respectively. The simulations of 3000-day production of a horizontal well in tight oil reservoir showed that the predicted productivity by the uncoupled model had an error of 38.30% from that by the fully-coupled model. Apparently, ignoring the influence of fluid-solid interaction effect led to serious deviations of the productivity prediction results. The productivity of horizontal well in tight oil reservoir was most sensitive to the start-up pressure gradient, and second most sensitive to the opening of artificial fractures. Enhancing the initial conductivity of artificial fractures was helpful to improve the productivity of tight oil wells. The influence of conductivity, spacing, number and length of artificial fractures should be considered comprehensively in fracturing design. Increasing the number of artificial fractures unilaterally could not achieve the expected increase in production.展开更多
In this paper, the iterative coupling approach is proposed for applications to solving multiphase flow equation systems in reservoir simulation, as it provides a more flexible time-stepping strategy than existing appr...In this paper, the iterative coupling approach is proposed for applications to solving multiphase flow equation systems in reservoir simulation, as it provides a more flexible time-stepping strategy than existing approaches. The iterative method decouples the whole equation systems into pressure and saturation/concentration equations, and then solves them in sequence, implicitly and semi-implicitly. At each time step, a series of iterations are computed, which involve solving linearized equations using specific tolerances that are iteration dependent. Following convergence of subproblems, material balance is checked. Convergence of time steps is based on material balance errors. Key components of the iterative method include phase scaling for deriving a pressure equation and use of several advanced numerical techniques. The iterative model is implemented for parallel computing platforms and shows high parallel efficiency and scalability.展开更多
Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways t...Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways to control the uncertainty ratio that is brought by the algorithm of stochastic simulation. By reasonably reducing the random value of the stochastic simulation result, the unexpected values introduced by the residual that associates with random series can be controlled. Another way when the data disperse unevenly is to control the stochastic simulation order by grouping the points that need to be simulated to make those points which can be simulated by more neighborhood hard data calculated first. Both methods do not go against the core stochastic simulation algorithm.展开更多
Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to impro...Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %.展开更多
Petroleum science has made remarkable progress in organic geochemistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the kno...Petroleum science has made remarkable progress in organic geochemistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the knowledge of its evolutionary history and especially the numerical computation of fluid flow and the history of its changes under heat is vital. The mathematical model call be described as a coupled system of nonlinear partial differentical equations with initial-boundary value problems. This thesis, from actual conditions such as the effect of fluid compressibility and the characteristic of large-scal science-engineering computalion. puts forward a kind of characteristic finite difference alternating-direction scheme. Optimal order estimates in L-2 norm are derived for the error in the approximate solutions.展开更多
Primary drainage capillary pressure data are usually correlatable with a 3D predictable property of grid cells.Accordingly,rock typing is normally performed based on an established correlation.Primary drainage as well...Primary drainage capillary pressure data are usually correlatable with a 3D predictable property of grid cells.Accordingly,rock typing is normally performed based on an established correlation.Primary drainage as well as corresponding imbibition and/or secondary drainage capillary pressure curves are averaged to establish a saturation table for each rock type region in reservoir modeling.This study in-vestigates the reliability of this industry-accepted methodology,and has two main contributions.First,we show that if different types of capillary pressures are plotted against water saturation,comparing them might be highly misleading.We demonstrate that although primary drainage capillary pressure data may be plotted against water saturation,the imbibition and secondary drainage capillary pressure data should be plotted against imbibed water saturation.This would enable reservoir engineers to check whether rocks with similar primary drainage capillary pressures do or do not have similar imbibition/secondary drainage counterparts.Using this technique,rock quality can be also deduced from imbibition and secondary drainage capillary pressure curves.We use capillary pressure data measured on limestone and sandstone samples from the Asmari Formation in three Iranian oilfields to evaluate our technique.The second contribution of this study is the proposal of a new methodology for preparing capillary pressure curves for reservoir models.In our methodology,a grid cell can represent more than one rock type region,each specific to a saturation function.As a part of this methodology,we present new physically meaningful equations for averaging primary drainage,imbibition,and secondary drainage capillary pressure curves.展开更多
Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotro...Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotropy and discontinuity of the karst water-bearing media in these areas. In this study, we used the Guang'an Longtan Coal mine in Sichuan as an example, and generalized the complex hydrogeological conditions in the reservoir area. A finite element numerical flow model was used to simulate current and future scenarios of roadway gushing at the bottom of the coal mine at pile number 1 + 700 m. The results show that the roadway section corresponding to valleys has a gushing quantity of 4323.8–4551.25 m^3/d before impoundment. Modeled water inflow after impoundment increased to 1.6 times the water inflow before impoundment, which threatens the impoundment as well as the roadway's normal operation. Therefore, roadway processing measures are needed to guarantee the safety of the impoundment and of the mining operation.展开更多
This paper describes a way of solving the reservoir simulation pressure equation using mulligrid technique. The subroutine MG of four-grid method is presented. The result for 2-D two-phase problem is exactly the same ...This paper describes a way of solving the reservoir simulation pressure equation using mulligrid technique. The subroutine MG of four-grid method is presented. The result for 2-D two-phase problem is exactly the same as that of the SOR method and the CPU time is much less than that of the latter one.展开更多
This paper investigates the deposition of asphaltenes in the porous medium of the studied field in Russia and predicts production profiles based on uncertainty evaluation. This problem can be solved by dynamic modelin...This paper investigates the deposition of asphaltenes in the porous medium of the studied field in Russia and predicts production profiles based on uncertainty evaluation. This problem can be solved by dynamic modeling, during which production profiles are estimated in two scenarios: with and without the activation of the asphaltene option. Calculations are carried out for two development scenarios: field operation under natural depletion and water injection into the aquifer as a reservoir pressure maintenance system. A full-scale compositional reservoir simulation model of the Russian oilfield was created. Within a dynamic simulation, the asphaltene option was activated and the asphaltene behavior in oil and porous medium was tuned according to our own special laboratory experiments. The model was also matched to production historical data, and a pattern model was prepared using the full-scale simulation model. Technological and the asphaltene option parameters were used in sensitivity and an uncertainty evaluation. Furthermore, probable production profiles within a forecast period were estimated. The sensitivity analysis of the pattern model to input parameters of the asphaltene option allowed determining the following heavy-hitters on the objective function: the molar weight of dissolved asphaltenes as a function of pressure, the asphaltene dissociation rate, the asphaltene adsorption coefficient and the critical velocity of oil movement in the reservoir. Under the natural depletion scenario, our simulations show a significant decrease in reservoir pressure and the formation of drawdown cones leading to asphaltene deposition in the bottom-hole area of production wells, decreasing their productivity. Water injection generally allows us to significantly reduce the volume of asphaltene phase transitions and has a positive effect on cumulative oil production. Injecting water into aquifer can keep the formation pressure long above the pressure for asphaltene precipitation, preventing the asphaltene deposition resulted from interaction of oil and water, so this way has higher oil production.展开更多
Simulation study was applied in the development planning of East Unity oilfield, Sudan. A grid consisting of 2 000 cells was constructed. A major challenge of the study wasto evolve a full field development and future...Simulation study was applied in the development planning of East Unity oilfield, Sudan. A grid consisting of 2 000 cells was constructed. A major challenge of the study wasto evolve a full field development and future reservoir management strategy that would ensuremaximum recovery of oil based on well Un51. Simulation shows that Un51 as injection well inAradiebaC would yield better oil recovery than to be production well.展开更多
Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified...Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified into two groups in terms of the different forms of matrix H-m, the main properties in applications and the new versions of these two types of methods were briefly reviewed, then one of the most efficient versions, GMRES method was applied to oil reservoir simulation. The block Pseudo-Elimination method was used to generate the preconditioned matrix. Numerical results show much better performance of this preconditioned techniques and the GMRES method than that of preconditioned ORTHMIN method, which is now in use in oil reservoir simulation. Finally, some limitations of Krylov subspace methods and some potential improvements to this type of methods are further presented.展开更多
It is known that the pore media characteristics of glutenite reservoirs are different from those of conventional sandstone reservoirs.Low reservoir permeability and naturally developed microfractures make water inject...It is known that the pore media characteristics of glutenite reservoirs are different from those of conventional sandstone reservoirs.Low reservoir permeability and naturally developed microfractures make water injection in this kind of reservoir very difficult.In this study,new exploitation methods are explored.Using a real glutenite reservoir as a basis,a three-dimensional fine geological model is elaborated.Then,combining the model with reservoir performance information,and through a historical fitting analysis,the saturation abundance distribution of remaining oil in the reservoir is determined.It is shown that,using this information,predictions can be made about whether the considered reservoir is suitable for horizontal well fracturing or not.The direction,well length,well spacing and productivity of horizontal well are also obtained.展开更多
基金support through PetroChina New-generation Reservoir Simulation Software (2011A-1010)the Program of Research on Continental Sedimentary Oil Reservoir Simulation (z121100004912001)+7 种基金founded by Beijing Municipal Science & Technology Commission and PetroChina Joint Research Funding12HT1050002654partially supported by the NSFC Grant 11201398Hunan Provincial Natural Science Foundation of China Grant 14JJ2063Specialized Research Fund for the Doctoral Program of Higher Education of China Grant 20124301110003partially supported by the Dean’s Startup Fund, Academy of Mathematics and System Sciences and the State High Tech Development Plan of China (863 Program 2012AA01A309partially supported by NSFC Grant 91130002Program for Changjiang Scholars and Innovative Research Team in University of China Grant IRT1179the Scientific Research Fund of the Hunan Provincial Education Department of China Grant 12A138
文摘As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel efficiency and robustness of the proposed method by applying it to million-cell benchmark problems.
基金supported by the National Natural Science Foundation project“Micro-Scale Effect of Oil-Gas Flow and the Mechanism of Enhancing Shale Oil Recovery by Natural Gas Injection”(No.52074317)。
文摘Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability.
基金supported by National Science and Technology Major Project of China(2016ZX05025-001)the Major Science and Technology Project of CNOOC(KJGG2021-0501).
文摘The J oilfield in the Bohai has a long development history and has undergone comprehensive adjustment measures,including water injection and polymer injection.Following these adjustments,the injection and production well network now features coexistence of both polymer injection wells and water injection wells,which has negatively impacted production dynamics.Firstly,based on the adjusted reservoir well network in the J oilfield,a representative water-polymer co-injection well network was established.Subsequently,a numerical simulation model of this typical reservoir unit was developed using reservoir numerical simulation methods to confirm the interference issues associated with water-polymer co-injection.Multiple reservoir numerical simulation models were designed to investigate various factors influencing water-polymer interference,resulting in graphical representations of each factor’s impact under different conditions.Finally,gray relational analysis was employed to rank the influence of these factors,yielding the following order of significance:polymer concentration,the ratio of drainage distance to well spacing,horizontal permeability variation,interlayer permeability variation,and intralayer permeability variation.This understanding provides robust guidance for future adjustments in the oilfield.
文摘The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility.This study focuses on a real fractured oil field that requires urgent production operations to reduce the producing GOR.In this study,the static model for the field was developed using commercial software,involving steps such as data collection,fault modeling,meshing,and statistical analysis to prepare for dynamic simulation.The dynamic model incorporates geometry,gridding,and rock properties from the static model,utilizing a dual-porosity approach for the naturally fractured reservoir and the Peng-Robinson equation for fluid phase behavior.Initial reservoir conditions,production history,and rock-fluid interactions were defined,with relative permeability curves indicating a water-wet reservoir and low critical gas saturation affecting the GOR.To better understand the relationship between reservoir and production parameters,a detailed sensitivity analysis was performed using the Response Surface Methodology(RSM).Following the sensitivity analysis,a history matching process was conducted using the Designed Exploration and Controlled Evolution(DECE)optimizer to validate the model for future forecasts.Six operational scenarios were defined to decrease the production GOR and enhance final recovery from the field.The results indicate that the water injection scenario is effective in preventing the GOR increase by maintaining reservoir pressure,thereby sustaining production over a longer period.This scenario also improves oil recovery by approximately 6%compared to the base case.Finally,optimization was carried out using the DECE optimizer for each scenario to fine-tune the operational parameters.The goal was to maximize oil revenue for each scenario during the optimization process.This study stands out as one of the few that provides a comprehensive analysis of production behavior and development planning for a real fractured reservoir with high producing GOR.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
文摘We study CO_(2) injection into a saline aquifer intersected by a tectonic fault using a coupled modeling approach to evaluate potential geomechanical risks.The simulation approach integrates the reservoir and mechanical simulators through a data transfer algorithm.MUFITS simulates non-isothermal multiphase flow in the reservoir,while FLAC3D calculates its mechanical equilibrium state.We accurately describe the tectonic fault,which consists of damage and core zones,and derive novel analytical closure relations governing the permeability alteration in the fault zone.We estimate the permeability of the activated fracture network in the damage zone and calculate the permeability of the main crack in the fault core,which opens on asperities due to slip.The coupled model is applied to simulate CO_(2) injection into synthetic and realistic reservoirs.In the synthetic reservoir model,we examine the impact of formation depth and initial tectonic stresses on geomechanical risks.Pronounced tectonic stresses lead to inelastic deformations in the fault zone.Regardless of the magnitude of tectonic stress,slip along the fault plane occurs,and the main crack in the fault core opens on asperities,causing CO_(2) leakage out of the storage aquifer.In the realistic reservoir model,we demonstrate that sufficiently high bottomhole pressure induces plastic deformations in the near-wellbore zone,interpreted as rock fracturing,without slippage along the fault plane.We perform a sensitivity analysis of the coupled model,varying the mechanical and flow properties of the storage layers and fault zone to assess fault stability and associated geomechanical risks.
基金supported by the State Key Laboratory of Offshore Oil and Gas Exploitation, Open Fund Project (No. CCL2023RCPS0162RQN)the primary funding, National Natural Science Foundation of China (No. ZX20230400)
文摘Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)plume is crucial.This study focuses on four key parameters-permeability,porosity,formation pressure,and temperature-to characterize the reservoir and analyse the petrophysical and elastic response of CO_(2).First,we performed reservoir simulations to simulate CO_(2)saturation,using multiple sets of these four parameters to examine their significance on CO_(2)saturation and the plume migration speed.Subsequently,the effect of these parameters on the elastic properties is tested using rock physics theory.We established a relationship of compressional wave velocity(V_(p))and quality factor(Q_(p))with the four key parameters,and conducted a sensitivity analysis to test their sensitivity to V_(p) and Q_(p).Finally,we utilized visco-acoustic wave equation simulated time-lapse seismic data based on the computed V_(p) and Q_(p) models,and analysed the impact of CO_(2) saturation changes on seismic data.As for the above nu-merical simulations and analysis,we conducted sensitivity analysis using both homogeneous and heterogeneous models.Consistent results are found between homogeneous and heterogeneous models.The permeability is the most sensitive parameter to the CO_(2)saturation,while porosity emerges as the primary factor affecting both Q_(p) and V_(p).Both Q_(p) and V_(p) increase with the porosity,which contradicts the observations in gas reservoirs.The seismic simulations highlight significant variations in the seismic response to different parameters.We provided analysis for these observations,which serves as a valuable reference for comprehensive CO_(2)integrity analysis,time-lapse monitoring,injection planning and site selection.
基金the National Natural Science Foundation of China(Grant No.52374051)the Joint Fund for Enterprise Innovation and Development of NSFC(Grant No.U24B2037).
文摘During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face challenges when dealing with rapidly changing reservoir conditions over time.Additionally,TC models struggle with complex,random noise primarily caused by measurement errors in production and injection rates.To address these challenges,this study introduces a dynamic capacitance(SV-DC)model based on state variables.By integrating the extended Kalman filter(EKF)algorithm,the SV-DC model provides more flexible predictions of inter-well connectivity and time-lag efficiency compared to the TC model.The robustness of the SV-DC model is verified by comparing relative errors between preset and calculated values through Monte Carlo simulations.Sensitivity analysis was performed to compare the model performance with the benchmark,using the Qinhuangdao Oilfield as a case study.The results show that the SV-DC model accurately predicts water breakthrough times.Increases in the liquid production index and water cut in two typical wells indicate the development time of ineffective circulation channels,further confirming the accuracy and reliability of the model.The SV-DC model offers significant advantages in addressing complex,dynamic oilfield production scenarios and serves as a valuable tool for the efficient and precise planning and management of future oilfield developments.
基金Supported by the National Science and Technology Major Project (2017ZX05013-005)。
文摘A mathematical model, fully coupling multiple porous media deformation and fluid flow, was established based on the elastic theory of porous media and fluid-solid coupling mechanism in tight oil reservoirs. The finite element method was used to determine the numerical solution and the accuracy of the model was verified. On this basis, the model was used to simulate productivity of multistage fractured horizontal wells in tight oil reservoirs. The results show that during the production of tight oil wells, the reservoir region close to artificial fractures deteriorated in physical properties significantly, e.g. the aperture and conductivity of artificial fractures dropped by 52.12% and 89.02% respectively. The simulations of 3000-day production of a horizontal well in tight oil reservoir showed that the predicted productivity by the uncoupled model had an error of 38.30% from that by the fully-coupled model. Apparently, ignoring the influence of fluid-solid interaction effect led to serious deviations of the productivity prediction results. The productivity of horizontal well in tight oil reservoir was most sensitive to the start-up pressure gradient, and second most sensitive to the opening of artificial fractures. Enhancing the initial conductivity of artificial fractures was helpful to improve the productivity of tight oil wells. The influence of conductivity, spacing, number and length of artificial fractures should be considered comprehensively in fracturing design. Increasing the number of artificial fractures unilaterally could not achieve the expected increase in production.
文摘In this paper, the iterative coupling approach is proposed for applications to solving multiphase flow equation systems in reservoir simulation, as it provides a more flexible time-stepping strategy than existing approaches. The iterative method decouples the whole equation systems into pressure and saturation/concentration equations, and then solves them in sequence, implicitly and semi-implicitly. At each time step, a series of iterations are computed, which involve solving linearized equations using specific tolerances that are iteration dependent. Following convergence of subproblems, material balance is checked. Convergence of time steps is based on material balance errors. Key components of the iterative method include phase scaling for deriving a pressure equation and use of several advanced numerical techniques. The iterative model is implemented for parallel computing platforms and shows high parallel efficiency and scalability.
文摘Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways to control the uncertainty ratio that is brought by the algorithm of stochastic simulation. By reasonably reducing the random value of the stochastic simulation result, the unexpected values introduced by the residual that associates with random series can be controlled. Another way when the data disperse unevenly is to control the stochastic simulation order by grouping the points that need to be simulated to make those points which can be simulated by more neighborhood hard data calculated first. Both methods do not go against the core stochastic simulation algorithm.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294)the China National Science and Technology Major Projects(Grant No:2016ZX05011)
文摘Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %.
文摘Petroleum science has made remarkable progress in organic geochemistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the knowledge of its evolutionary history and especially the numerical computation of fluid flow and the history of its changes under heat is vital. The mathematical model call be described as a coupled system of nonlinear partial differentical equations with initial-boundary value problems. This thesis, from actual conditions such as the effect of fluid compressibility and the characteristic of large-scal science-engineering computalion. puts forward a kind of characteristic finite difference alternating-direction scheme. Optimal order estimates in L-2 norm are derived for the error in the approximate solutions.
基金Kansas State University for the faculty start-up fund.
文摘Primary drainage capillary pressure data are usually correlatable with a 3D predictable property of grid cells.Accordingly,rock typing is normally performed based on an established correlation.Primary drainage as well as corresponding imbibition and/or secondary drainage capillary pressure curves are averaged to establish a saturation table for each rock type region in reservoir modeling.This study in-vestigates the reliability of this industry-accepted methodology,and has two main contributions.First,we show that if different types of capillary pressures are plotted against water saturation,comparing them might be highly misleading.We demonstrate that although primary drainage capillary pressure data may be plotted against water saturation,the imbibition and secondary drainage capillary pressure data should be plotted against imbibed water saturation.This would enable reservoir engineers to check whether rocks with similar primary drainage capillary pressures do or do not have similar imbibition/secondary drainage counterparts.Using this technique,rock quality can be also deduced from imbibition and secondary drainage capillary pressure curves.We use capillary pressure data measured on limestone and sandstone samples from the Asmari Formation in three Iranian oilfields to evaluate our technique.The second contribution of this study is the proposal of a new methodology for preparing capillary pressure curves for reservoir models.In our methodology,a grid cell can represent more than one rock type region,each specific to a saturation function.As a part of this methodology,we present new physically meaningful equations for averaging primary drainage,imbibition,and secondary drainage capillary pressure curves.
基金supported by the National Natural Science Foundation of China (41272377)
文摘Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotropy and discontinuity of the karst water-bearing media in these areas. In this study, we used the Guang'an Longtan Coal mine in Sichuan as an example, and generalized the complex hydrogeological conditions in the reservoir area. A finite element numerical flow model was used to simulate current and future scenarios of roadway gushing at the bottom of the coal mine at pile number 1 + 700 m. The results show that the roadway section corresponding to valleys has a gushing quantity of 4323.8–4551.25 m^3/d before impoundment. Modeled water inflow after impoundment increased to 1.6 times the water inflow before impoundment, which threatens the impoundment as well as the roadway's normal operation. Therefore, roadway processing measures are needed to guarantee the safety of the impoundment and of the mining operation.
文摘This paper describes a way of solving the reservoir simulation pressure equation using mulligrid technique. The subroutine MG of four-grid method is presented. The result for 2-D two-phase problem is exactly the same as that of the SOR method and the CPU time is much less than that of the latter one.
文摘This paper investigates the deposition of asphaltenes in the porous medium of the studied field in Russia and predicts production profiles based on uncertainty evaluation. This problem can be solved by dynamic modeling, during which production profiles are estimated in two scenarios: with and without the activation of the asphaltene option. Calculations are carried out for two development scenarios: field operation under natural depletion and water injection into the aquifer as a reservoir pressure maintenance system. A full-scale compositional reservoir simulation model of the Russian oilfield was created. Within a dynamic simulation, the asphaltene option was activated and the asphaltene behavior in oil and porous medium was tuned according to our own special laboratory experiments. The model was also matched to production historical data, and a pattern model was prepared using the full-scale simulation model. Technological and the asphaltene option parameters were used in sensitivity and an uncertainty evaluation. Furthermore, probable production profiles within a forecast period were estimated. The sensitivity analysis of the pattern model to input parameters of the asphaltene option allowed determining the following heavy-hitters on the objective function: the molar weight of dissolved asphaltenes as a function of pressure, the asphaltene dissociation rate, the asphaltene adsorption coefficient and the critical velocity of oil movement in the reservoir. Under the natural depletion scenario, our simulations show a significant decrease in reservoir pressure and the formation of drawdown cones leading to asphaltene deposition in the bottom-hole area of production wells, decreasing their productivity. Water injection generally allows us to significantly reduce the volume of asphaltene phase transitions and has a positive effect on cumulative oil production. Injecting water into aquifer can keep the formation pressure long above the pressure for asphaltene precipitation, preventing the asphaltene deposition resulted from interaction of oil and water, so this way has higher oil production.
文摘Simulation study was applied in the development planning of East Unity oilfield, Sudan. A grid consisting of 2 000 cells was constructed. A major challenge of the study wasto evolve a full field development and future reservoir management strategy that would ensuremaximum recovery of oil based on well Un51. Simulation shows that Un51 as injection well inAradiebaC would yield better oil recovery than to be production well.
文摘Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified into two groups in terms of the different forms of matrix H-m, the main properties in applications and the new versions of these two types of methods were briefly reviewed, then one of the most efficient versions, GMRES method was applied to oil reservoir simulation. The block Pseudo-Elimination method was used to generate the preconditioned matrix. Numerical results show much better performance of this preconditioned techniques and the GMRES method than that of preconditioned ORTHMIN method, which is now in use in oil reservoir simulation. Finally, some limitations of Krylov subspace methods and some potential improvements to this type of methods are further presented.
文摘It is known that the pore media characteristics of glutenite reservoirs are different from those of conventional sandstone reservoirs.Low reservoir permeability and naturally developed microfractures make water injection in this kind of reservoir very difficult.In this study,new exploitation methods are explored.Using a real glutenite reservoir as a basis,a three-dimensional fine geological model is elaborated.Then,combining the model with reservoir performance information,and through a historical fitting analysis,the saturation abundance distribution of remaining oil in the reservoir is determined.It is shown that,using this information,predictions can be made about whether the considered reservoir is suitable for horizontal well fracturing or not.The direction,well length,well spacing and productivity of horizontal well are also obtained.