期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Extracting useful information from sparsely logged wellbores for improved rock typing of heterogeneous reservoir characterization using well-log attributes, feature influence and optimization
1
作者 David A.Wood 《Petroleum Science》 2025年第6期2307-2311,共5页
The information from sparsely logged wellbores is currently under-utilized in reservoir simulation models and their proxies using deep and machine learning (DL/ML).This is particularly problematic for large heterogene... The information from sparsely logged wellbores is currently under-utilized in reservoir simulation models and their proxies using deep and machine learning (DL/ML).This is particularly problematic for large heterogeneous gas/oil reservoirs being considered for repurposing as gas storage reservoirs for CH_(4),CO_(2) or H_(2) and/or enhanced oil recovery technologies.Lack of well-log data leads to inadequate spatial definition of complex models due to the large uncertainties associated with the extrapolation of petrophysical rock types (PRT) calibrated with limited core data across heterogeneous and/or anisotropic reservoirs.Extracting well-log attributes from the few well logs available in many wells and tying PRT predictions based on them to seismic data has the potential to substantially improve the confidence in PRT 3D-mapping across such reservoirs.That process becomes more efficient when coupled with DL/ML models incorporating feature importance and optimized,dual-objective feature selection techniques. 展开更多
关键词 Petrophysical/geomechanical rock typing Log attribute calculations Heterogeneous reservoir characterization Core-well-log-seismic integration Feature selection influences
原文传递
Improved reservoir characterization by means of supervised machine learning and model-based seismic impedance inversion in the Penobscot field,Scotian Basin
2
作者 Satya Narayan Soumyashree Debasis Sahoo +2 位作者 Soumitra Kar Sanjit Kumar Pal Subhra Kangsabanik 《Energy Geoscience》 EI 2024年第2期183-201,共19页
The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,v... The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration. 展开更多
关键词 reservoir characterization Model-based inversion Multilayer perceptron(MLP) IMPEDANCE Petrophysical properties Scotian Basin
在线阅读 下载PDF
Reservoir Characterization of the Early Cretaceous Sarmord and Garagu Formations from Atrush-1 and Mangesh-1 Wells, Kurdistan Region, Iraq
3
作者 Ayad N. F. Edilbi Wrya J. Mamaseni +4 位作者 Mahdi Kh. Aswad Bahroz Gh. Abdullah Falah Kh. Al-Jaboury Govand H. Sherwani Nadhir Al-Ansari 《Open Journal of Geology》 2021年第10期509-524,共16页
Petrophysical properties of the Early Cretaceous Sarmord and Garagu formations from the Atrush and Sarsang Blocks in the Kurdistan Region are studied. These formations are generally composed of limestones and dolomiti... Petrophysical properties of the Early Cretaceous Sarmord and Garagu formations from the Atrush and Sarsang Blocks in the Kurdistan Region are studied. These formations are generally composed of limestones and dolomitic limestones interbedded with thin to medium layers of yellowish-gray marl (calcareous mudstone). The current study shows that the average shale volume in the Sarmord and Garage formations is between 16% and 20%. In Atrush-1 Well, the average porosity ratio of the Sarmord and Garagu formations is fair to good (15% and 11%, respectively). However, in Mangesh-1 Well, the porosity value is poor;it is around 4% on average. Generally, most of the hydrocarbons that have been observed within the pore spaces are residual oil type in Atrush-1 Well and movable hydrocarbon type in Mangesh-1 Well. In Atrush-1 Well, out of 362 m thickness of both formations, only 180 m is considered to be a pay zone;whereas, the pay zone is just around 8.0 m thick out of 347 m of the total thickness. According to the calculated porosity values, the Garagu and Sarmord formations are not considered as good reservoirs in the studied wells, with the exception of Atrush-1 Well where the Sarmord Formation has fair potential reservoir characteristics. 展开更多
关键词 Sarmord Formation Garagu Formation reservoir characterization Hydrocarbons Saturation Net Pay
在线阅读 下载PDF
Pore Structure Characterization of Clay Minerals in the Lower Karamay Formation Conglomerate Reservoir in the Junggar Basin and its Impact on Hydrocarbon Storage and Seepage 被引量:2
4
作者 Taskyn ABITKAZY DU Shuheng +1 位作者 XU Feng SHI Yongmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第2期558-569,共12页
The micro-nano pore structure of conglomerate in the Lower Karamay Formation of the Xinjiang Oilfield,Junggar Basin,northern China is characterized to predict its impact on fluid reserves and seepage.Authigenic clay m... The micro-nano pore structure of conglomerate in the Lower Karamay Formation of the Xinjiang Oilfield,Junggar Basin,northern China is characterized to predict its impact on fluid reserves and seepage.Authigenic clay minerals are mainly kaolinite(67%),followed by an illite/smectite mixed layer(18%),illite(10%),and chlorite(5%).For kaolinite,pore throats between 0–200 nm are dominant,accounting for 90%of the total pore throats.For illite/smectite mixed layer,pore throats also between 0–200 nm account for nearly 80%,while pore throats between 200-500 nm only account for 15%.For illite,pore throats below 100 nm account for about 80%,while pore throats in the range of 100–500 nm only account for 20%.For chlorite,most throats are below 200 nm.The pore roundness of illite is the highest,while the pore roundness of chlorite is relatively lower.The lower limits of the dynamic and static pore throat radii are 42.128 nm and 72.42 nm,respectively.The theoretical contribution rates of the illite/smectite mixed layer,kaolinite,illite and chlorite to storage/seepage are 60%/45.86%,52.72%/38.18%,37.07%/28.78%and 32.97%/26.3%,respectively.Therefore,the contribution rates of clay minerals in the study area are as follows:illite/smectite mixed layer,kaolinite,illite and chlorite. 展开更多
关键词 oil CONGLOMERATE clay minerals micro-nano pore reservoir characterization TRIASSIC XINJIANG
在线阅读 下载PDF
Application of seismic sedimentology in characterization of fluvial-deltaic reservoirs in Xihu sag, East China Sea shelf basin 被引量:2
5
作者 LOU Min CAI Hua +4 位作者 HE Xianke LIU Yinghui HUANG Xin ZHANG Xianguo LIU Huafeng 《Petroleum Exploration and Development》 2023年第1期138-151,共14页
The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attribut... The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attributes,which bring difficulties to the reservoir prediction for subsequent exploration and development of lithologic reservoirs.The traditional seismic sedimentology technology is optimized by applying the characteristic technologies such as frequency-boosting interpretation,inversion-conventional–90°phase shift joint construction of seismic lithologic bodies,nonlinear slices,paleogeomorphology restoration,and multi-attribute fusion,to obtain typical slice attributes,which are conducive to geological form description and sedimentary interpretation.The Huagang Formation developed three types of sedimentary bodies:braided river,meandering river and shallow water delta,and the vertical sedimentary evolution was controlled by the mid-term base-level cycle and paleogeomorphology.In the early–middle stage of the mid-term base-level ascending cycle,braided channel deposits were dominant,and vertical superimposed sand bodies were developed.In the late stage of the ascending half-cycle and the early stage of the descending half-cycle,meandering river deposits were dominant,and isolated sand bodies were developed.In the middle–late stage of the descending half-cycle,shallow-water delta deposits were dominant,and migratory medium–thick sand bodies were developed.Restricted paleogeomorphology controlled the sand body distribution,while non-restricted paleogeomorphology had little effect on the sand body distribution.Based on reservoir characterization,the fault sealing type and reservoir updip pinch-out type structural lithological traps are proposed as the main directions for future exploration and development in the Xihu sag. 展开更多
关键词 East China Sea shelf basin Xihu sag Oligocene Huagang Formation fluvial-deltaic facies reservoir characterization seismic sedimentology
在线阅读 下载PDF
Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework 被引量:1
6
作者 Zhi-Qi Guo Xiao-Ying Qin Cai Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3428-3440,共13页
Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is ch... Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region. 展开更多
关键词 Tight gas sandstone reservoirs Quantitative reservoir characterization Rock-physics-based framework Microfracture porosity Rock physics template
原文传递
Exploring the potential of drill cuttings for reservoir characterization:A case study from the Volga-Ural basin,Russia 被引量:1
7
作者 Ibrahem Yousef V.P.Morozov 《Petroleum Research》 EI 2024年第2期193-205,共13页
The research objectives are to assess the possibility of using drill cutting analysis to obtain information about the mineralogical and geochemical properties of the reservoir rocks.Drill cutting samples were collecte... The research objectives are to assess the possibility of using drill cutting analysis to obtain information about the mineralogical and geochemical properties of the reservoir rocks.Drill cutting samples were collected from a vertical well that penetrated the Domanik sediments(Semiluksk Formation)in one of the oil fields in the Volga-Ural petroleum province.Thin sections from drill cuttings were examined using an optical polarizing microscope(Axio Imager A2).X-ray diffraction(XRD)analyses were performed using a Brucker D2 Phaser X-ray powder diffractometer.Thermophysical properties were studied using an STA 449 F3 Jupiter instrument.The pyrolytic studies were performed using the Rock-Eval method.Visual inspection showed that the studied sediments are alternations of carbonates and siliceous-carbonate rocks.Thin section examinations revealed that the carbonates are mainly limestone(mudstone and wackestone)and are characterized by a dense texture and up to 30%organic residues.The siliceous-carbonate rocks are dominated by siliceous mudstones and are characterized by dark colours,layered structure,and an enrichment in organic matter.XRD analyses showed that the carbonate rocks are mainly composed of calcite,dolomite,quartz,feldspar,and mica,which are minor components.The siliceous-carbonate rocks are dominated by quartz,followed by calcite,although they also contain feldspars,mica,dolomite,and pyrite as impurities.According to the simultaneous thermal analysis,the average total hydrocarbon in the carbonate and siliceous-carbonate rocks is 13.6%(for the core samples)and 11.5%(for the drill cutting samples).The content of heavy hydrocarbons in the rocks is higher than the content of light hydrocarbons,indicating the immature nature of organic matter.Kerogen is found sporadically in siliceous-carbonate rocks.According to the pyrolytic studies,average S1 is 4.4 mg/g and average S2 is 19.8 mg/g(for the core samples);average S1 is 2.1 mg/g and average S2 is 17.8 mg/g(for the drill cutting samples),which indicated that the studied sediments have very good to excellent generation potential.The average T_(max) of 425.7℃(for the drill cutting samples)and 427.9℃(for the core samples)indicate immature organic matter that generated only heavy oils.Comparing the results of the analysed drill cutting samples with the results of the analysed core analysis from the same reservoir interval in the neighbouring wells showed a good correlation,which proves that this technique is a valid tool that provides an alternative,cost-effective method to determine the rock's characteristics from drill cuttings. 展开更多
关键词 Drill cuttings reservoir characterization Domanik Semiluksk Volga-Ural RUSSIA
原文传递
A robust deep structured prediction model for petroleum reservoir characterization using pressure transient test data 被引量:1
8
作者 Rakesh Kumar Pandey Anil Kumar Ajay Mandal 《Petroleum Research》 2022年第2期204-219,共16页
A robust deep learning model consisting of long short-term memory and fully connected neural net-works has been proposed to automatically interpret homogeneous petroleum reservoirs having infinite,no flow,and constant... A robust deep learning model consisting of long short-term memory and fully connected neural net-works has been proposed to automatically interpret homogeneous petroleum reservoirs having infinite,no flow,and constant pressure outer boundary conditions.The pressure change data recorded during the well test operation along with its derivative is input into the model to perform the classification for identifying the reservoir model and,further,regression to estimate output parameter.Gaussian noise was added to analytical models while generating the synthetic training data.The hyperparameters were regulated to perform model optimization,resulting in a batch size of 64,Adam optimization algorithm,learning rate of 0.01,and 80:10:10 data split ratio as the best choices of hyperparameters.The perfor-mance accuracy also increased with an increase in the number of samples during training.Suitable classification and regression metrics have been used to evaluate the performance of the models.The paper also demonstrates the prediction performance of the optimized model using simulated and actual oil well pressure drawdown test cases.The proposed model achieved minimum and maximum relative errors of 0.0019 and 0.0308,respectively,in estimating output for the simulated test cases and relative error of 0.0319 for the real test case. 展开更多
关键词 Well test reservoir characterization Automatic interpretation Prediction model Hyperparameter tuning Performance indicator
原文传递
Analytical models & type-curve matching techniques for reservoir characterization using wellbore storage dominated flow regime 被引量:1
9
作者 Salam Al-Rbeawi 《Petroleum》 2018年第2期223-239,共17页
The applicability of early time data in reservoir characterization is not always considered worthy.Early time data is usually controlled by wellbore storage effect.This effect may last for pseudo-radial flow or even b... The applicability of early time data in reservoir characterization is not always considered worthy.Early time data is usually controlled by wellbore storage effect.This effect may last for pseudo-radial flow or even boundary dominated flow.Eliminating this effect is an option for restoring real data.Using the data with this effect is another option that could be used successfully for reservoir characterization.This paper introduces new techniques for restoring disrupted data by wellbore storage at early time production.The proposed techniques are applicable for reservoirs depleted by horizontal wells and hydraulic fractures.Several analytical models describe early time data,controlled by wellbore storage effect,have been generated for both horizontal wells and horizontal wells intersecting multiple hydraulic fractures.The relationships of the peak points(humps)with the pressure,pressure derivative and production time have been mathematically formulated in this study for different wellbore storage coefficients.For horizontal wells,a complete set of type curves has been included for different wellbore lengths,skin factors and wellbore storage coefficients.Another complete set of type curves has been established for fractured formations based on the number of hydraulic fractures,spacing between fractures,and wellbore storage coefficient.The study has shown that early radial flow for short to moderate horizontal wells is the most affected by wellbore storage while for long horizontal wells;early linear flow is the most affected flow regime by wellbore storage effect.The study has also emphasized the applicability of early time data for characterizing the formations even though they could be controlled by wellbore storage effect.As a matter of fact,this paper has found out that wellbore storage dominated flow could have remarkable relationships with the other flow regimes might be developed during the entire production times.These relationships can be used to properly describe the formations and quantify some of their characteristics. 展开更多
关键词 reservoir engineering reservoir modeling and simulation Pressure transient analysis reservoir characterization Wellbore storage effect Skin factor reservoir flow regimes Pressure behaviors
原文传递
Fine quantitative characterization of high-H2S gas reservoirs under the influence of liquid sulfur deposition and adsorption
10
作者 LI Tong MA Yongsheng +3 位作者 ZENG Daqian LI Qian ZHAO Guang SUN Ning 《Petroleum Exploration and Development》 SCIE 2024年第2期416-429,共14页
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p... In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir. 展开更多
关键词 high-H2S gas reservoir liquid sulfur adsorption and deposition pore structure physical property reservoir characterization
在线阅读 下载PDF
Harnessing deep transient testing for reservoir characterization and CO_(2) emission reduction in challenging geological settings
11
作者 Eghbal Motaei Tarek Ganat +1 位作者 Khairul Azhar Hamoud Al-Hadrami 《Petroleum Research》 EI 2024年第3期380-392,共13页
This paper provides a comprehensive overview of Deep Transient Testing(DTT),a cutting-edge technique for reservoir characterization that has revolutionized the oil and gas industry.The main aim of DTT is to characteri... This paper provides a comprehensive overview of Deep Transient Testing(DTT),a cutting-edge technique for reservoir characterization that has revolutionized the oil and gas industry.The main aim of DTT is to characterize the reservoir with a deeper radius of investigation.The optimization of the radius of investigation with the DTT approach is studied in detail.Reveal is a commercial numerical simulation application used to simulate the DTT process and evaluate the pressure wave analysis in the porous media.The main aim of the simulation is to understand the impact of the reservoir quality on the pressure response and use it to address the noise-to-pule ratio,which is a determinantal parameter in testing duration.The tested wells with the DTT tool show that measured well productivity can deliver the minimum commercial rate.The has been delivered within 2 days compared to the potential test time of 21 days which saved the 19 rig days and contributed to C02 emission reduction of(gas flaring 1340+rig emission 600)1940 Metric tons equivalent to 421 cars emission in a year.However,DTT also presents certain limitations,such as the requirement for specialized equipment and expertise,as well as the potential for formation damage during testing.This study provides a detailed description of the DTT technique,encompassing its history,theory,and practical applications.Furthermore,it discusses the benefits and limitations of DTT and presents case studies to illustrate its effectiveness across various reservoir types.Overall,this study serves as a valuable resource for reservoir engineers,geologists,and other professionals involved in the exploration and production of oil and gas. 展开更多
关键词 Deep transient testing reservoir characterization Wireline formation testers Drill stem test Radius of investigation
原文传递
Binary Level Set Methods for Dynamic Reservoir Characterization by Operator Splitting Scheme
12
作者 Changhui Yao 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第6期780-798,共19页
In this paper,operator splitting scheme for dynamic reservoir characterization by binary level set method is employed.For this problem,the absolute permeability of the two-phase porous medium flow can be simulated by ... In this paper,operator splitting scheme for dynamic reservoir characterization by binary level set method is employed.For this problem,the absolute permeability of the two-phase porous medium flow can be simulated by the constrained augmented Lagrangian optimization method with well data and seismic time-lapse data.By transforming the constrained optimization problem in an unconstrained one,the saddle point problem can be solved by Uzawas algorithms with operator splitting scheme,which is based on the essence of binary level set method.Both the simple and complicated numerical examples demonstrate that the given algorithms are stable and efficient and the absolute permeability can be satisfactorily recovered. 展开更多
关键词 Dynamic reservoir characterization binary level set method operator splitting scheme the augmented lagrangian method
在线阅读 下载PDF
3D geocellular modeling for reservoir characterization of lacustrine turbidite reservoirs:Submember 3 of the third member of the Eocene Shahejie Formation,Dongying depression,Eastern China
13
作者 Marco Shaban Lutome Chengyan Lin +2 位作者 Dong Chunmei Xianguo Zhang Januarius Matata Bishanga 《Petroleum Research》 2022年第1期47-61,共15页
3D geocellular modeling is increasingly essential in the petroleum industry;it brings together all petroleum disciplines,and it is commonly used in simulation and production forecast.However,modeling slope and deep-wa... 3D geocellular modeling is increasingly essential in the petroleum industry;it brings together all petroleum disciplines,and it is commonly used in simulation and production forecast.However,modeling slope and deep-water turbidite reservoirs using conventional modeling methods pose a significant challenge due to the structural complexity and thin-beds associated with these reservoirs.Through the innovative modeling technology of PaleoScan,the reservoirs in Sub member 3 of the third member of the Shahejie Formation are modeled to understand the structural framework.The resulting model is populated with petrophysical properties i.e.,porosity and permeability to predict their lateral and vertical distribution within these sandstone reservoirs.The study suggests that the reservoir in the highstand system tract(HST)is characterized by the clinoforms configuration framework.The reservoir is highly faulted mainly in the northern and southeastern parts of the depression.The sedimentary layers are deposited across the slope and downlapping,thinning,and terminating toward to the west.The two isochore surface maps reveal sediment thickness variation and depositional trends within each individual depositional layer.The zones or areas that corresponds to low values on the thickness maps suggest minor uplifts associated with intensive faulting in the Eocene period.These topographical highs played a fundamental role in distributing the sediments delivered to the basin from distant sources.The maps reveal that sediments that filled the basin appear to come from different source points,primarily delivered from the north,southeast,and northeast of the basin with varying depositional trends.The modeled porosity and permeability indicate that the delta fed turbidite reservoirs are characterized by medium to high porosity values of 10e20%and low to medium permeability values of 30-410mD,respectively.The porosity values increase to the southeast and toward the basinwards(west)while permeability varies within the individual sedimentary layers.The distribution of porosity and permeability is not uniform vertically.This suggests the presence of mixed none-reservoir layers with locally and periodically deposited sandstone reservoirs within the stratigraphic during rapid delta progradation.The HST is characterized by six different delta progradation cycles;each phase produced locally deposited lacustrine turbidite sandstones in the basin,which are essential reservoirs in this Formation.The innovative PaleoScan interpretation technology has successfully created a high-resolution 3D reservoir model of this complex geology-such innovative technology is vital to similar complex geology globally. 展开更多
关键词 Geomodelling Geocellular modelling Dongying depression Property modelling reservoir characterization Lacustrine turbidites
原文传递
Multiscale characterization of the Albian-Cenomanian reservoir system behavior: A case study from the North East Abu Gharadig Basin, North Western Desert, Egypt
14
作者 Ola Rashad Ahmed Niazy El-Barkooky +1 位作者 Abd El-Moneim El-Araby Mohamed El-Tonbary 《Petroleum Science》 CSCD 2024年第6期3909-3936,共28页
Since its discovery in 2010, the NEAG 2 has been one of the most productive oil fields of the Badr El-Din Petroleum Company(BAPETCO) in the northern Western Desert of Egypt. The Albian-Cenomanian reservoir system has ... Since its discovery in 2010, the NEAG 2 has been one of the most productive oil fields of the Badr El-Din Petroleum Company(BAPETCO) in the northern Western Desert of Egypt. The Albian-Cenomanian reservoir system has a unique performance but suffers from several issues hindering its production.The latest production report in 2023, NEAG-2 Field was producing 1760 bbls of oil with 36500 bbls of water, i.e., 95% water cut. Despite that, the field has reached a 39% recovery factor but the reservoir forecast suggests a much higher recovery factor. Therefore, the NEAG 2 Field requires a comprehensive geological model to depict its reservoir heterogeneities better. We introduce a solid and integrated workflow to investigate the reservoir characters among different scales of geological heterogeneity and offer solutions to overcome some data gaps. After characterizing the reservoir elements by the structural,stratigraphic, petrographic, and petrophysical analyses, a machine learning-based method was applied to overcome the missing whole rock cores in creating a detailed electro-facies log for all field wells. The Neural-Network algorithm required the facies types to be grouped into definitive reservoir qualities to be applied. The resultant electro-facies log had a very good match with the input logs, which validated the facies grouping. This was followed by the porosity-permeability transforms, estimated from mobility data, to create a permeability curve for all field wells, despite the unavailability of core data. The reservoir was categorized into three rock types, each with a specific range of quality, signifying their different flow abilities which were supported by dynamic data. The Lower Bahariya-Kharita in NEAG 2 was ultimately concluded to be a complex heterogeneous reservoir with varying flow abilities and production behaviors.The recovery factor mismatch is due to unrecovered reserves, and a new production strategy should be introduced to reach the ultimate recovery. This integration of geologic and dynamic data is strongly recommended for any reservoir characterization study to avoid oversimplifying the reservoir system and to design the right reservoir development plan. 展开更多
关键词 NEAG 2 field reservoir characterization Machine learning Neural network analysis reservoir flow units Pressure analysis Anddrive mechanisms
原文传递
Characterization of favorable lithofacies in tight sandstone reservoirs and its significance for gas exploration and exploitation: A case study of the 2nd Member of Triassic Xujiahe Formation in the Xinchang area, Sichuan Basin
15
作者 LIU Junlong LIU Zhongqun +2 位作者 XIAO Kaihua HUANG Yanqing JIN Wujun 《Petroleum Exploration and Development》 2020年第6期1194-1205,共12页
By using core,logging curves,and experiment data,favorable lithofacies types in the 2 nd Member of Triassic Xujiahe Formation in the Xinchang area,Sichuan Basin were classified,standard of the favorable lithofacies wa... By using core,logging curves,and experiment data,favorable lithofacies types in the 2 nd Member of Triassic Xujiahe Formation in the Xinchang area,Sichuan Basin were classified,standard of the favorable lithofacies was established,planar distribution regularities of the favorable lithofacies were identified,and forming mechanisms of the favorable lithofacies and their control effect on production were examined.(1)The 2 nd Member of Xujiahe Formation has twelve types of lithofacies,among which multiple layer medium-coarse grain sandstone lithofacies,parallel bedding medium-coarse grain sandstone lithofacies,massive bedding medium-coarse grain sandstone lithofacies,inclined bedding medium-coarse grain sandstone lithofacies,and charcoal-bearing medium-coarse grain sandstone lithofacies with better physical properties and higher gas content are favorable lithofacies;they feature low gamma,low neutron porosity,low resistivity,and high acoustic travel time on logging curves.(2)The sedimentary process controls spatial distribution of sand bodies which are the material basis of the favorable lithofacies;post diagenetic fluids would differentially reconstruct the favorable lithofacies;tectonic activities and abnormal formation pressure made strata slide along the weakness plane,giving rise to fractures in different types of rocks,which can enhance the reservoir permeability significantly.(3)The development degree of favorable lithofacies is a major factor affecting stable production of gas well. 展开更多
关键词 tight sandstone reservoir favorable lithofacies reservoir characterization Triassic Xujiahe Formation Xinchang area Sichuan Basin
在线阅读 下载PDF
The application study on the multi-scales integrated prediction method to fractured reservoir description 被引量:19
16
作者 陈双全 曾联波 +3 位作者 黄平 孙绍寒 张琬璐 李向阳 《Applied Geophysics》 SCIE CSCD 2016年第1期80-92,219,共14页
In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics ... In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics modelling technique,the seismic azimuthal anisotropy characteristic is analyzed for distinguishing the fractures of meso-scale.Furthermore,by integrating geological core fracture description,image well-logging fracture interpretation,seismic attributes macro-scale fracture prediction and core slice micro-scale fracture characterization,an comprehensive multi-scale fracture prediction methodology and technique workflow are proposed by using geology,well-logging and seismic multi-attributes.Firstly,utilizing the geology core slice observation(Fractures description) and image well-logging data interpretation results,the main governing factors of fracture development are obtained,and then the control factors of the development of regional macro-scale fractures are carried out via modelling of the tectonic stress field.For the meso-scale fracture description,the poststack geometric attributes are used to describe the macro-scale fracture as well,the prestack attenuation seismic attribute is used to predict the meso-scale fracture.Finally,by combining lithological statistic inversion with superposed results of faults,the relationship of the meso-scale fractures,lithology and faults can be reasonably interpreted and the cause of meso-scale fractures can be verified.The micro-scale fracture description is mainly implemented by using the electron microscope scanning of cores.Therefore,the development of fractures in reservoirs is assessed by valuating three classes of fracture prediction results.An integrated fracture prediction application to a real field in Sichuan basin,where limestone reservoir fractures developed,is implemented.The application results in the study area indicates that the proposed multi-scales integrated fracture prediction method and the technique procedureare able to deal with the strong heterogeneity and multi-scales problems in fracture prediction.Moreover,the multi-scale fracture prediction technique integrated with geology,well-logging and seismic multi-information can help improve the reservoir characterization and sweet-spots prediction for the fractured hydrocarbon reservoirs. 展开更多
关键词 Multi-scales Fracture prediction HETEROGENEITY reservoir characterization Sweet-spots prediction
在线阅读 下载PDF
Seismic low-frequency-based calculation of reservoir fluid mobility and its applications 被引量:11
17
作者 陈学华 贺振华 +2 位作者 朱四新 刘伟 钟文丽 《Applied Geophysics》 SCIE CSCD 2012年第3期326-332,362,共8页
Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic med... Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification. 展开更多
关键词 fluid mobility seismic low-frequency reservoir characterization fluid identification instantaneous spectral decomposition
在线阅读 下载PDF
Integrated application of 3D seismic and microseismic data in the development of tight gas reservoirs 被引量:16
18
作者 杨瑞召 赵争光 +3 位作者 彭维军 谷育波 王占刚 庄熙勤 《Applied Geophysics》 SCIE CSCD 2013年第2期157-169,235,236,共15页
The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production ... The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs. 展开更多
关键词 tight sand gas 3D seismic microseismic reservoir characterization hydrauli fracture and fracture barrier /
在线阅读 下载PDF
Three-component seismic data in thin interbedded reservoir exploration
19
作者 张丽艳 王彦春 裴江云 《Applied Geophysics》 SCIE CSCD 2015年第1期79-85,122,共8页
We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water... We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil. 展开更多
关键词 3D–3C thin interbedded reservoirs gas reservoir characterization joint inversion tapping remaining oil
在线阅读 下载PDF
A Comprehensive Model for Evaluating Coalbed Methane Reservoirs in China 被引量:20
20
作者 YAO Yanbin LIU Dameng TANG Dazhen HUANG Wenhui TANG Shuheng CHE Yao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第6期1253-1270,共18页
Coalbed methane reservoir (CBMR) evaluation is important for choosing the prospective target area for coalbed methane exploration and production. This study aims at identifying the characteristic parameters and meth... Coalbed methane reservoir (CBMR) evaluation is important for choosing the prospective target area for coalbed methane exploration and production. This study aims at identifying the characteristic parameters and methods to evaluate CBMR. Based on the geological surveys, laboratory measurements and field works, a four-level analytic hierarchy process (AHP) model for CBMR evaluation is proposed. In this model, different weights are prioritized and assigned on the basis of three main criteria (including reservoir physical property, storage capacity and geological characteristics), 15 sub-criteria, and 18 technical alternatives; the later of which are discussed in detail. The model was applied to evaluate the CBMR of the Permo-Carboniferous coals in the Qinshui Basin, North China. This GIS-based fuzzy AHP comprehensive model can be used for the evaluation of CBMR of medium-high rank (mean maximum vitrinite reflectance 〉0.5 %) coal districts in China. 展开更多
关键词 coalbed methane reservoir reservoir evaluation reservoir characterization comprehensive model Fuzzy Hierarchy Process Approach (FAHP)
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部