With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stabi...With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stability assessment.To address problems in existing methods,such as low data processing efficiency and poor phase recognition accuracy under low signal-to-noise ratio(SNR)conditions in complex geological environments,this study proposes an intelligent phase picking model based on ResUNet.The model integrates the residual learning mechanism of ResNet with the multi-scale feature extraction capability of UNet,effectively mitigating the vanishing gradient problem in deep networks.It also achieves cross-layer fusion of shallow detail features and deep semantic features through skip connections in the encoder-decoder structure.Compared with traditional short-time average/long-time average(STA/LTA)algorithms and advanced neural network models such as PhaseNet and EQTransformer,ResUNet shows superior performance in picking P-and S-wave phases.The model was trained on 400000 labeled microseismic signals from the Stanford earthquake dataset(STEAD)and was successfully applied to the Shizhuyuan polymetallic mine in Hunan Province,China.The results demonstrate that ResUNet achieves high picking accuracy and robustness in complex geological conditions,offering reliable technical support for early warning of disasters such as rockburst in deep underground engineering.展开更多
Liver tumor is the fifth most occurring type of tumor in men and the ninth most occurring type of tumor in women according to recent reports of Global cancer statistics 2018.There are several imaging tests like Comput...Liver tumor is the fifth most occurring type of tumor in men and the ninth most occurring type of tumor in women according to recent reports of Global cancer statistics 2018.There are several imaging tests like Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and ultrasound that can diagnose the liver tumor after taking the sample from the tissue of the liver.These tests are costly and time-consuming.This paper proposed that image processing through deep learning Convolutional Neural Network(CNNs)ResUNet model that can be helpful for the early diagnose of tumor instead of conventional methods.The existing studies have mainly used the two Cascaded CNNs for liver segmentation and evaluation of Region Of Interest(ROI).This study uses ResUNet,an updated version of U-Net and ResNet Models that utilize the service of Residential blocks.We apply over method on the 3D-IRCADb01 dataset that is based on CT slices of liver tumor affected patients.The results showed the True Value Accuracy around 99%and F1 score performance around 95%.This method will be helpful for early and accurate diagnose of the Liver tumor to save the lives of many patients in the field of Biotechnology.展开更多
基金Project(2022YFC2905100)supported by the National Key Research and Development Program of ChinaProject(52174098)supported by the National Natural Science Foundation of China。
文摘With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stability assessment.To address problems in existing methods,such as low data processing efficiency and poor phase recognition accuracy under low signal-to-noise ratio(SNR)conditions in complex geological environments,this study proposes an intelligent phase picking model based on ResUNet.The model integrates the residual learning mechanism of ResNet with the multi-scale feature extraction capability of UNet,effectively mitigating the vanishing gradient problem in deep networks.It also achieves cross-layer fusion of shallow detail features and deep semantic features through skip connections in the encoder-decoder structure.Compared with traditional short-time average/long-time average(STA/LTA)algorithms and advanced neural network models such as PhaseNet and EQTransformer,ResUNet shows superior performance in picking P-and S-wave phases.The model was trained on 400000 labeled microseismic signals from the Stanford earthquake dataset(STEAD)and was successfully applied to the Shizhuyuan polymetallic mine in Hunan Province,China.The results demonstrate that ResUNet achieves high picking accuracy and robustness in complex geological conditions,offering reliable technical support for early warning of disasters such as rockburst in deep underground engineering.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No RG-1438-089.
文摘Liver tumor is the fifth most occurring type of tumor in men and the ninth most occurring type of tumor in women according to recent reports of Global cancer statistics 2018.There are several imaging tests like Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and ultrasound that can diagnose the liver tumor after taking the sample from the tissue of the liver.These tests are costly and time-consuming.This paper proposed that image processing through deep learning Convolutional Neural Network(CNNs)ResUNet model that can be helpful for the early diagnose of tumor instead of conventional methods.The existing studies have mainly used the two Cascaded CNNs for liver segmentation and evaluation of Region Of Interest(ROI).This study uses ResUNet,an updated version of U-Net and ResNet Models that utilize the service of Residential blocks.We apply over method on the 3D-IRCADb01 dataset that is based on CT slices of liver tumor affected patients.The results showed the True Value Accuracy around 99%and F1 score performance around 95%.This method will be helpful for early and accurate diagnose of the Liver tumor to save the lives of many patients in the field of Biotechnology.