Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making ...Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy.展开更多
Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding pro...Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding process,then obtains laser fringe information through digital image processing,identifies welding defects,and finally realizes online control of weld defects.The performance of a convolutional neural network is related to its structure and the quality of the input image.The acquired original images are labeled with LabelMe,and repeated attempts are made to determine the appropriate filtering and edge detection image preprocessing methods.Two-stage convolutional neural networks with different structures are built on the Tensorflow deep learning framework,different thresholds of intersection over union are set,and deep learning methods are used to evaluate the collected original images and the preprocessed images separately.Compared with the test results,the comprehensive performance of the improved feature pyramid networks algorithm based on the basic network VGG16 is lower than that of the basic network Resnet101.Edge detection of the image will significantly improve the accuracy of the model.Adding blur will reduce the accuracy of the model slightly;however,the overall performance of the improved algorithm is still relatively good,which proves the stability of the algorithm.The self-developed software inspection system can be used for image preprocessing and defect recognition,which can be used to record the number and location of typical defects in continuous welds.展开更多
Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically...Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically,we combine two differently structured deep learning models,ResNet101 and Swin Transformer(SwinT),with the addition of the Convolutional Block Attention Module(CBAM)attention mechanism,which makes full use of SwinT's global context information modeling ability and ResNet101's local feature extraction ability,and additionally the cross entropy loss function is replaced by the focus loss function to solve the problem of unbalanced allocation of breast cancer data sets.The multi-classification recognition accuracies of the proposed fusion model under 40X,100X,200X and 400X BreakHis datasets are 97.50%,96.60%,96.30 and 96.10%,respectively.Compared with a single SwinT model and ResNet 101 model,the fusion model has higher accuracy and better generalization ability,which provides a more effective method for screening,diagnosis and pathological classification of female breast cancer.展开更多
Pathological myopia(PM)is a severe ocular disease leading to blindness.As a traditional noninvasive diagnostic method,fundus color photography(FCP)is widely used in detecting PM due to its highfidelity and precision.H...Pathological myopia(PM)is a severe ocular disease leading to blindness.As a traditional noninvasive diagnostic method,fundus color photography(FCP)is widely used in detecting PM due to its highfidelity and precision.However,manual examination of fundus photographs for PM is time-consuming and prone to high error rates.Existing automated detection technologies have yet to study the detailed classification in diagnosing different stages of PM lesions.In this paper,we proposed an intelligent system which utilized Resnet101 technology to multi-categorically diagnose PM by classifying FCPs with different stages of lesions.The system subdivided different stages of PM into eight subcategories,aiming to enhance the precision and efficiency of the diagnostic process.It achieved an average accuracy rate of 98.86%in detection of PM,with an area under the curve(AUC)of 98.96%.For the eight subcategories of PM,the detection accuracy reached 99.63%,with an AUC of 99.98%.Compared with other widely used multi-class models such as VGG16,Vision Transformer(VIT),EfficientNet,this system demonstrates higher accuracy and AUC.This artificial intelligence system is designed to be easily integrated into existing clinical diagnostic tools,providing an efficient solution for large-scale PM screening.展开更多
This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In ...This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In this paper,since the amount of data collected for deep learning is insufficient,we intend to use the efficient feature extraction function of the neural network based on the Transformer algorithm.We want to use the Cascade Region-based Convolutional Neural Networks(Cascade R-CNN)Swin model,which is a mixture of the transformer model and Cascade R-CNN model to detect greening disease occurring in citrus.In this paper,we try to improve model safety by establishing a linear relationship between samples using Mixup and Cutmix algorithms,which are image processing-based data augmentation techniques.In addition,by using the ImageNet dataset,transfer learning,and stochastic weight averaging(SWA)methods,more accuracy can be obtained.This study compared the Faster Region-based Convolutional Neural Networks Residual Network101(Faster R-CNN ResNet101)model,Cascade Regionbased Convolutional Neural Networks Residual Network101(Cascade RCNN-ResNet101)model,and Cascade R-CNN Swin Model.As a result,the Faster R-CNN ResNet101 model came out as Average Precision(AP)(Intersection over Union(IoU)=0.5):88.2%,AP(IoU=0.75):62.8%,Recall:68.2%,and the Cascade R-CNN ResNet101 model was AP(IoU=0.5):91.5%,AP(IoU=0.75):67.2%,Recall:73.1%.Alternatively,the Cascade R-CNN Swin Model showed AP(IoU=0.5):94.9%,AP(IoU=0.75):79.8%and Recall:76.5%.Thus,the Cascade R-CNN Swin Model showed the best results for detecting citrus greening disease.展开更多
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo...In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images.展开更多
文摘Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy.
基金the National Natural Science Foundation of China(No.12064027)。
文摘Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding process,then obtains laser fringe information through digital image processing,identifies welding defects,and finally realizes online control of weld defects.The performance of a convolutional neural network is related to its structure and the quality of the input image.The acquired original images are labeled with LabelMe,and repeated attempts are made to determine the appropriate filtering and edge detection image preprocessing methods.Two-stage convolutional neural networks with different structures are built on the Tensorflow deep learning framework,different thresholds of intersection over union are set,and deep learning methods are used to evaluate the collected original images and the preprocessed images separately.Compared with the test results,the comprehensive performance of the improved feature pyramid networks algorithm based on the basic network VGG16 is lower than that of the basic network Resnet101.Edge detection of the image will significantly improve the accuracy of the model.Adding blur will reduce the accuracy of the model slightly;however,the overall performance of the improved algorithm is still relatively good,which proves the stability of the algorithm.The self-developed software inspection system can be used for image preprocessing and defect recognition,which can be used to record the number and location of typical defects in continuous welds.
基金By the National Natural Science Foundation of China(NSFC)(No.61772358),the National Key R&D Program Funded Project(No.2021YFE0105500),and the Jiangsu University‘Blue Project’.
文摘Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically,we combine two differently structured deep learning models,ResNet101 and Swin Transformer(SwinT),with the addition of the Convolutional Block Attention Module(CBAM)attention mechanism,which makes full use of SwinT's global context information modeling ability and ResNet101's local feature extraction ability,and additionally the cross entropy loss function is replaced by the focus loss function to solve the problem of unbalanced allocation of breast cancer data sets.The multi-classification recognition accuracies of the proposed fusion model under 40X,100X,200X and 400X BreakHis datasets are 97.50%,96.60%,96.30 and 96.10%,respectively.Compared with a single SwinT model and ResNet 101 model,the fusion model has higher accuracy and better generalization ability,which provides a more effective method for screening,diagnosis and pathological classification of female breast cancer.
基金supported by the Natural National Science Foundation of China(62175156)the Science and technology innovation project of Shanghai Science and Technology Commission(22S31903000)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27)。
文摘Pathological myopia(PM)is a severe ocular disease leading to blindness.As a traditional noninvasive diagnostic method,fundus color photography(FCP)is widely used in detecting PM due to its highfidelity and precision.However,manual examination of fundus photographs for PM is time-consuming and prone to high error rates.Existing automated detection technologies have yet to study the detailed classification in diagnosing different stages of PM lesions.In this paper,we proposed an intelligent system which utilized Resnet101 technology to multi-categorically diagnose PM by classifying FCPs with different stages of lesions.The system subdivided different stages of PM into eight subcategories,aiming to enhance the precision and efficiency of the diagnostic process.It achieved an average accuracy rate of 98.86%in detection of PM,with an area under the curve(AUC)of 98.96%.For the eight subcategories of PM,the detection accuracy reached 99.63%,with an AUC of 99.98%.Compared with other widely used multi-class models such as VGG16,Vision Transformer(VIT),EfficientNet,this system demonstrates higher accuracy and AUC.This artificial intelligence system is designed to be easily integrated into existing clinical diagnostic tools,providing an efficient solution for large-scale PM screening.
基金This research was supported by the Honam University Research Fund,2021.
文摘This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In this paper,since the amount of data collected for deep learning is insufficient,we intend to use the efficient feature extraction function of the neural network based on the Transformer algorithm.We want to use the Cascade Region-based Convolutional Neural Networks(Cascade R-CNN)Swin model,which is a mixture of the transformer model and Cascade R-CNN model to detect greening disease occurring in citrus.In this paper,we try to improve model safety by establishing a linear relationship between samples using Mixup and Cutmix algorithms,which are image processing-based data augmentation techniques.In addition,by using the ImageNet dataset,transfer learning,and stochastic weight averaging(SWA)methods,more accuracy can be obtained.This study compared the Faster Region-based Convolutional Neural Networks Residual Network101(Faster R-CNN ResNet101)model,Cascade Regionbased Convolutional Neural Networks Residual Network101(Cascade RCNN-ResNet101)model,and Cascade R-CNN Swin Model.As a result,the Faster R-CNN ResNet101 model came out as Average Precision(AP)(Intersection over Union(IoU)=0.5):88.2%,AP(IoU=0.75):62.8%,Recall:68.2%,and the Cascade R-CNN ResNet101 model was AP(IoU=0.5):91.5%,AP(IoU=0.75):67.2%,Recall:73.1%.Alternatively,the Cascade R-CNN Swin Model showed AP(IoU=0.5):94.9%,AP(IoU=0.75):79.8%and Recall:76.5%.Thus,the Cascade R-CNN Swin Model showed the best results for detecting citrus greening disease.
基金National Defense Pre-research Fund Project(No.KMGY318002531)。
文摘In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images.