期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多分支ResCovLSTM的城市轨道交通短时客流预测模型
被引量:
1
1
作者
刘燕
李恒如
谷卫
《现代城市轨道交通》
2025年第2期130-139,共10页
随着城市化进程的加速,城市轨道交通客流预测对于提高运营效率和服务质量愈发重要。然而,现有模型在处理大规模、多维度数据时面临预测精度不足和计算复杂度高的挑战。为解决该问题,文章提出一种基于多分支ResCovLSTM的深度学习模型,创...
随着城市化进程的加速,城市轨道交通客流预测对于提高运营效率和服务质量愈发重要。然而,现有模型在处理大规模、多维度数据时面临预测精度不足和计算复杂度高的挑战。为解决该问题,文章提出一种基于多分支ResCovLSTM的深度学习模型,创新性地设计4个独立分支,分别处理天气与空气质量、流入量、流出量以及网络拓扑结构等关键因素。通过融合残差网络、CovLSTM和卷积注意力等模块,有效提升预测精度和模型泛化能力。实验结果表明,该模型在单步和多步预测中均表现出色,显著降低预测误差。以WMAPE为例,模型在单步预测中的WMAPE仅为8.625 1%,相比次优模型降低0.16%,证明模型的有效性和优越性。
展开更多
关键词
城市轨道交通
短时客流预测
多步预测
深度学习
rescovlstm
在线阅读
下载PDF
职称材料
题名
基于多分支ResCovLSTM的城市轨道交通短时客流预测模型
被引量:
1
1
作者
刘燕
李恒如
谷卫
机构
常州铁道高等职业技术学校轨道交通学院
常州地铁集团有限公司
出处
《现代城市轨道交通》
2025年第2期130-139,共10页
文摘
随着城市化进程的加速,城市轨道交通客流预测对于提高运营效率和服务质量愈发重要。然而,现有模型在处理大规模、多维度数据时面临预测精度不足和计算复杂度高的挑战。为解决该问题,文章提出一种基于多分支ResCovLSTM的深度学习模型,创新性地设计4个独立分支,分别处理天气与空气质量、流入量、流出量以及网络拓扑结构等关键因素。通过融合残差网络、CovLSTM和卷积注意力等模块,有效提升预测精度和模型泛化能力。实验结果表明,该模型在单步和多步预测中均表现出色,显著降低预测误差。以WMAPE为例,模型在单步预测中的WMAPE仅为8.625 1%,相比次优模型降低0.16%,证明模型的有效性和优越性。
关键词
城市轨道交通
短时客流预测
多步预测
深度学习
rescovlstm
Keywords
urban rail transit
short-term passenger flow prediction
multi-step prediction
deep learning
rescovlstm
分类号
U293.13 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多分支ResCovLSTM的城市轨道交通短时客流预测模型
刘燕
李恒如
谷卫
《现代城市轨道交通》
2025
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部