Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven method...Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven methods primarily use the limited frequency bandwidth information of seismic data and can invert P-wave impedance with high accuracy,but not high resolution.Conventional data-driven methods mainly employ the information from well-log data and can provide high-accuracy and highresolution P-wave impedance owing to the superior nonlinear curve fitting capacity of neural networks.However,these methods require a significant number of training samples,which are frequently insufficient.To obtain P-wave impedance with both high accuracy and high resolution,we propose a model-data-driven inversion method using Res Nets and the normalized zero-lag cross-correlation objective function which is effective for avoiding local minima and suppressing random noise.By using initial models and training samples,the proposed model-data-driven method can invert P-wave impedance with satisfactory accuracy and resolution.Tests on synthetic and field data demonstrate the proposed method’s efficacy and practicability.展开更多
为解决自然条件下人脸表情识别易受角度、光线、遮挡物的影响以及人脸表情数据集各类表情数量不均衡等问题,提出基于Res2Net的人脸表情识别方法。使用Res2Net50作为特征提取的主干网络,在预处理阶段对图像随机翻转、缩放、裁剪进行数据...为解决自然条件下人脸表情识别易受角度、光线、遮挡物的影响以及人脸表情数据集各类表情数量不均衡等问题,提出基于Res2Net的人脸表情识别方法。使用Res2Net50作为特征提取的主干网络,在预处理阶段对图像随机翻转、缩放、裁剪进行数据增强,提升模型的泛化性。引入广义平均池化(generalized mean pooling, GeM)方式,关注图像中比较显著的区域,增强模型的鲁棒性;选用Focal Loss损失函数,针对表情类别不平衡和错误分类问题,提高较难识别表情的识别率。该方法在FER2013数据集上准确率达到了70.41%,相较于原Res2Net50网络提高了1.53%。结果表明,在自然条件下对人脸表情识别具有更好的准确性。展开更多
Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded de...Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms.展开更多
Autonomous driving technology has made a lot of outstanding achievements with deep learning,and the vehicle detection and classification algorithm has become one of the critical technologies of autonomous driving syst...Autonomous driving technology has made a lot of outstanding achievements with deep learning,and the vehicle detection and classification algorithm has become one of the critical technologies of autonomous driving systems.The vehicle instance segmentation can perform instance-level semantic parsing of vehicle information,which is more accurate and reliable than object detection.However,the existing instance segmentation algorithms still have the problems of poor mask prediction accuracy and low detection speed.Therefore,this paper proposes an advanced real-time instance segmentation model named FIR-YOLACT,which fuses the ICIoU(Improved Complete Intersection over Union)and Res2Net for the YOLACT algorithm.Specifically,the ICIoU function can effectively solve the degradation problem of the original CIoU loss function,and improve the training convergence speed and detection accuracy.The Res2Net module fused with the ECA(Efficient Channel Attention)Net is added to the model’s backbone network,which improves the multi-scale detection capability and mask prediction accuracy.Furthermore,the Cluster NMS(Non-Maximum Suppression)algorithm is introduced in the model’s bounding box regression to enhance the performance of detecting similarly occluded objects.The experimental results demonstrate the superiority of FIR-YOLACT to the based methods and the effectiveness of all components.The processing speed reaches 28 FPS,which meets the demands of real-time vehicle instance segmentation.展开更多
基金financially supported by the Important National Science&Technology Specific Project of China(Grant No.2017ZX05018-005)
文摘Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven methods primarily use the limited frequency bandwidth information of seismic data and can invert P-wave impedance with high accuracy,but not high resolution.Conventional data-driven methods mainly employ the information from well-log data and can provide high-accuracy and highresolution P-wave impedance owing to the superior nonlinear curve fitting capacity of neural networks.However,these methods require a significant number of training samples,which are frequently insufficient.To obtain P-wave impedance with both high accuracy and high resolution,we propose a model-data-driven inversion method using Res Nets and the normalized zero-lag cross-correlation objective function which is effective for avoiding local minima and suppressing random noise.By using initial models and training samples,the proposed model-data-driven method can invert P-wave impedance with satisfactory accuracy and resolution.Tests on synthetic and field data demonstrate the proposed method’s efficacy and practicability.
文摘为解决自然条件下人脸表情识别易受角度、光线、遮挡物的影响以及人脸表情数据集各类表情数量不均衡等问题,提出基于Res2Net的人脸表情识别方法。使用Res2Net50作为特征提取的主干网络,在预处理阶段对图像随机翻转、缩放、裁剪进行数据增强,提升模型的泛化性。引入广义平均池化(generalized mean pooling, GeM)方式,关注图像中比较显著的区域,增强模型的鲁棒性;选用Focal Loss损失函数,针对表情类别不平衡和错误分类问题,提高较难识别表情的识别率。该方法在FER2013数据集上准确率达到了70.41%,相较于原Res2Net50网络提高了1.53%。结果表明,在自然条件下对人脸表情识别具有更好的准确性。
文摘Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms.
基金supported by the Natural Science Foundation of Guizhou Province(Grant Number:20161054)Joint Natural Science Foundation of Guizhou Province(Grant Number:LH20177226)+1 种基金2017 Special Project of New Academic Talent Training and Innovation Exploration of Guizhou University(Grant Number:20175788)The National Natural Science Foundation of China under Grant No.12205062.
文摘Autonomous driving technology has made a lot of outstanding achievements with deep learning,and the vehicle detection and classification algorithm has become one of the critical technologies of autonomous driving systems.The vehicle instance segmentation can perform instance-level semantic parsing of vehicle information,which is more accurate and reliable than object detection.However,the existing instance segmentation algorithms still have the problems of poor mask prediction accuracy and low detection speed.Therefore,this paper proposes an advanced real-time instance segmentation model named FIR-YOLACT,which fuses the ICIoU(Improved Complete Intersection over Union)and Res2Net for the YOLACT algorithm.Specifically,the ICIoU function can effectively solve the degradation problem of the original CIoU loss function,and improve the training convergence speed and detection accuracy.The Res2Net module fused with the ECA(Efficient Channel Attention)Net is added to the model’s backbone network,which improves the multi-scale detection capability and mask prediction accuracy.Furthermore,the Cluster NMS(Non-Maximum Suppression)algorithm is introduced in the model’s bounding box regression to enhance the performance of detecting similarly occluded objects.The experimental results demonstrate the superiority of FIR-YOLACT to the based methods and the effectiveness of all components.The processing speed reaches 28 FPS,which meets the demands of real-time vehicle instance segmentation.