Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded de...Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms.展开更多
Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of pho...Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of photogenerated charge carriers.Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult.In this study,we present a novel approach combining molybdenum(Mo) monoatomic doping and size engineering to produce a series of Mo-ReS_(2) quantum dots(MR QDs) with controllable dimensions.High-resolution structural characterization,first-principle calculations,and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry,thereby improving the piezoelectric properties.The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency,leading to optimized photocatalytic performance.Additionally,the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals,substantially boosting photo-sterilization efficiency.Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min.Furthermore,we developed a self-purification system simulating water drainage,utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs,achieving piezoelectric synergistic photodegradation.This innovative approach provides a more environmentally friendly and economical method for water self-purification,paving the way for advanced water treatment technologies.展开更多
To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network mo...To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification.展开更多
为解决自然条件下人脸表情识别易受角度、光线、遮挡物的影响以及人脸表情数据集各类表情数量不均衡等问题,提出基于Res2Net的人脸表情识别方法。使用Res2Net50作为特征提取的主干网络,在预处理阶段对图像随机翻转、缩放、裁剪进行数据...为解决自然条件下人脸表情识别易受角度、光线、遮挡物的影响以及人脸表情数据集各类表情数量不均衡等问题,提出基于Res2Net的人脸表情识别方法。使用Res2Net50作为特征提取的主干网络,在预处理阶段对图像随机翻转、缩放、裁剪进行数据增强,提升模型的泛化性。引入广义平均池化(generalized mean pooling, GeM)方式,关注图像中比较显著的区域,增强模型的鲁棒性;选用Focal Loss损失函数,针对表情类别不平衡和错误分类问题,提高较难识别表情的识别率。该方法在FER2013数据集上准确率达到了70.41%,相较于原Res2Net50网络提高了1.53%。结果表明,在自然条件下对人脸表情识别具有更好的准确性。展开更多
文摘Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms.
基金financially supported by the National Natural Science Foundation of China (No.52071146)Guangdong Provincial Natural Science Foundation (No.2023A1515010989)the Science and Technology Projects in Guangzhou (No.202201000008)。
文摘Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of photogenerated charge carriers.Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult.In this study,we present a novel approach combining molybdenum(Mo) monoatomic doping and size engineering to produce a series of Mo-ReS_(2) quantum dots(MR QDs) with controllable dimensions.High-resolution structural characterization,first-principle calculations,and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry,thereby improving the piezoelectric properties.The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency,leading to optimized photocatalytic performance.Additionally,the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals,substantially boosting photo-sterilization efficiency.Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min.Furthermore,we developed a self-purification system simulating water drainage,utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs,achieving piezoelectric synergistic photodegradation.This innovative approach provides a more environmentally friendly and economical method for water self-purification,paving the way for advanced water treatment technologies.
基金supported by National Natural Science Foundation of China(No.61862037)Lanzhou Jiaotong University Tianyou Innovation Team Project(No.TY202002)。
文摘To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification.
文摘为解决自然条件下人脸表情识别易受角度、光线、遮挡物的影响以及人脸表情数据集各类表情数量不均衡等问题,提出基于Res2Net的人脸表情识别方法。使用Res2Net50作为特征提取的主干网络,在预处理阶段对图像随机翻转、缩放、裁剪进行数据增强,提升模型的泛化性。引入广义平均池化(generalized mean pooling, GeM)方式,关注图像中比较显著的区域,增强模型的鲁棒性;选用Focal Loss损失函数,针对表情类别不平衡和错误分类问题,提高较难识别表情的识别率。该方法在FER2013数据集上准确率达到了70.41%,相较于原Res2Net50网络提高了1.53%。结果表明,在自然条件下对人脸表情识别具有更好的准确性。