Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded de...Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms.展开更多
Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of pho...Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of photogenerated charge carriers.Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult.In this study,we present a novel approach combining molybdenum(Mo) monoatomic doping and size engineering to produce a series of Mo-ReS_(2) quantum dots(MR QDs) with controllable dimensions.High-resolution structural characterization,first-principle calculations,and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry,thereby improving the piezoelectric properties.The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency,leading to optimized photocatalytic performance.Additionally,the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals,substantially boosting photo-sterilization efficiency.Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min.Furthermore,we developed a self-purification system simulating water drainage,utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs,achieving piezoelectric synergistic photodegradation.This innovative approach provides a more environmentally friendly and economical method for water self-purification,paving the way for advanced water treatment technologies.展开更多
文摘Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms.
基金financially supported by the National Natural Science Foundation of China (No.52071146)Guangdong Provincial Natural Science Foundation (No.2023A1515010989)the Science and Technology Projects in Guangzhou (No.202201000008)。
文摘Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of photogenerated charge carriers.Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult.In this study,we present a novel approach combining molybdenum(Mo) monoatomic doping and size engineering to produce a series of Mo-ReS_(2) quantum dots(MR QDs) with controllable dimensions.High-resolution structural characterization,first-principle calculations,and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry,thereby improving the piezoelectric properties.The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency,leading to optimized photocatalytic performance.Additionally,the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals,substantially boosting photo-sterilization efficiency.Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min.Furthermore,we developed a self-purification system simulating water drainage,utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs,achieving piezoelectric synergistic photodegradation.This innovative approach provides a more environmentally friendly and economical method for water self-purification,paving the way for advanced water treatment technologies.