The mechanically guided assembly that relies on the compressive buckling of strate- gically patterned 2D thin films represents a robust route to complex 3D mesostructures in advanced materials and even functional micr...The mechanically guided assembly that relies on the compressive buckling of strate- gically patterned 2D thin films represents a robust route to complex 3D mesostructures in advanced materials and even functional micro-devices. Based on this approach, formation of complex 3D configurations with suspended curvy features or hierarchical geometries remains a challenge. In this paper, we incorporate the prestrained shape memory polymer in the 2D precur- sor design to enable local rolling deformations after the mechanical assembly through compressive buckling. A theoretical model captures quantitatively the effect of key design parameters on local rolling deformations. The combination of precisely controlled global buckling and local rolling expands substantially the range of accessible 3D configurations. The combined experimental and theoretical studies over a dozen of examples demonstrate the utility of the proposed strategy in achieving complex reprogrammable 3D mesostructures.展开更多
Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from res...Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.展开更多
Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots,although most studies are limited to designs,controls,or physical/mec...Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots,although most studies are limited to designs,controls,or physical/mechanical motions.Here,we present a transformable,reconfigurable robotic platform created by the integration of magnetically responsive soft composite matrices with deformable multifunctional electronics.Magnetic compounds engineered to undergo phase transition at a low temperature can readily achieve reversible magnetization and conduct various changes of motions and shapes.Thin and flexible electronic system designed with mechanical dynamics does not interfere with movements of the soft electronic robot,and the performances of wireless circuit,sensors,and devices are independent of a variety of activities,all of which are verified by theoretical studies.Demonstration of navigations and electronic operations in an artificial track highlights the potential of the integrated soft robot for on-demand,environments-responsive movements/metamorphoses,and optoelectrical detection and stimulation.Further improvements to a miniaturized,sophisticated system with material options enable in situ monitoring and treatment in envisioned areas such as biomedical implants.展开更多
Metasurfaces have enabled the realization of several optical functionalities over an ultrathin platform,fostering the exciting field of flat optics.Traditional metasurfaces are achieved by arranging a layout of static...Metasurfaces have enabled the realization of several optical functionalities over an ultrathin platform,fostering the exciting field of flat optics.Traditional metasurfaces are achieved by arranging a layout of static meta-atoms to imprint a desired operation on the impinging wavefront,but their functionality cannot be altered.Reconfigurability and programmability of metasurfaces are the next important step to broaden their impact,adding customized on-demand functionality in which each meta-atom can be individually reprogrammed.We demonstrate a mechanical metasurface platform with controllable rotation at the meta-atom level,which can implement continuous Pancharatnam–Berry phase control of circularly polarized microwaves.As the proof-of-concept experiments,we demonstrate metalensing,focused vortex beam generation,and holographic imaging in the same metasurface template,exhibiting versatility and superior performance.Such dynamic control of electromagnetic waves using a single,low-cost metasurface paves an avenue towards practical applications,driving the field of reprogrammable intelligent metasurfaces for a variety of applications.展开更多
Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred p...Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred polarization can be produced from a set of multiple polarization states,thus improving the quality of the communication link.This paper presents a new concept of a polarization programmable reconfigurable antenna array that consists of a number of polarization reconfigurable antenna elements with a finite number of possible polarization states.By employing a new optimization strategy and programming the polarization states of all the array elements,we demonstrate that it is possible to realize any desired LP in the vectorial array radiation pattern with accurate control of sidelobe and crosspolarization levels(XPLs),thereby achieving the desired polarization to perfectly match that of the required communications signal.Both numerical and experimental results are provided to prove the concept,and they agree well with each other.展开更多
Over the past 5 years,digital coding and programmable metamaterials have beendeveloped rapidly since their first exhibition in 2014.The iconic feature of the digitalcoding metamaterial is using digital codes like"...Over the past 5 years,digital coding and programmable metamaterials have beendeveloped rapidly since their first exhibition in 2014.The iconic feature of the digitalcoding metamaterial is using digital codes like"0"and"1 to represent the distinctelectromagnetic(EM)responses.This seemingly trivial progress has successfullyreform the design theory from the effective medium to coding patterns,bridgingthe physical world and digital information world.More interestingly,beyond thesimple coding on the parameters or patterns,the digital coding metamaterials aremore intend to introduce the concept of direct interactions and operations of digitalinformation within EM fields,to realize infomation processing,transmission orrecognition.Toaccurately exhibit the informational specialties,we classify the codingmetamaterials,digital metamaterials and programmable metamaterials,as well asother information-operating metamaterials,as information metamaterials In thisreview article,we fistly introduce the digital coding concept,working mechanism,and related design methods.Then,three important theories including the scatteringpattem calculation,convolution operationand entropyofdigital codingmetamaterials,arediscussed in details.Finally we introduce several system-level works based on theinfomation metamaterials,such as the new-architecture wireless communication systemsand reprogrammable imaging systems,to show the powerful manipulation capabilities ofinformation metamaterials.As the nextgeneration of infomation metamaterials,two proofof-concept smart metamaterials and their advanced architectures are discussed.In thesummary,the development track of information metamaterials and future trends are presented.展开更多
The power of controlling objects with mind has captivated a popular fascination to human beings.One possible path is to employ brain signal collecting technologies together with emerging programmable metasurfaces(PM),...The power of controlling objects with mind has captivated a popular fascination to human beings.One possible path is to employ brain signal collecting technologies together with emerging programmable metasurfaces(PM),whose functions or operating modes can be switched or customized via on-site programming or pre-defined software.Nevertheless,most of existing PMs are wire-connected to users,manually-controlled and not real-time.Here,we propose the concept of remotely mind-controlled metasurface(RMCM)via brainwaves.Rather than DC voltage from power supply or AC voltages from signal generators,the metasurface is controlled by brainwaves collected in real time and transmitted wirelessly from the user.As an example,we demonstrated a RMCM whose scattering pattern can be altered dynamically according to the user’s brain waves via Bluetooth.The attention intensity information is extracted as the control signal and a mapping between attention intensity and scattering pattern of the metasurface is established.With such a framework,we experimentally demonstrated and verified a prototype of such metasurface system which can be remotely controlled by the user to modify its scattering pattern.This work paves a new way to intelligent metasurfaces and may find applications in health monitoring,5G/6G communications,smart sensors,etc.展开更多
A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noi...A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 /μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5×2.5 mm2 and the current is 3.5 mA.展开更多
基金X.G. and Z.X. contributed equally to this work. Y.Z. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 11502129 and 11722217) and the Tsinghua National Laboratory for Information Science and Technology. Y.H. acknowledges the support from the NSF (Grant Nos. CMMI1400169, CMMI1534120 and CMMI1635443). X.G. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 11702155).
文摘The mechanically guided assembly that relies on the compressive buckling of strate- gically patterned 2D thin films represents a robust route to complex 3D mesostructures in advanced materials and even functional micro-devices. Based on this approach, formation of complex 3D configurations with suspended curvy features or hierarchical geometries remains a challenge. In this paper, we incorporate the prestrained shape memory polymer in the 2D precur- sor design to enable local rolling deformations after the mechanical assembly through compressive buckling. A theoretical model captures quantitatively the effect of key design parameters on local rolling deformations. The combination of precisely controlled global buckling and local rolling expands substantially the range of accessible 3D configurations. The combined experimental and theoretical studies over a dozen of examples demonstrate the utility of the proposed strategy in achieving complex reprogrammable 3D mesostructures.
基金supported by the National Natural Science Foundation of China (62101588)the National Key Research and Development Program of China (SQ2022YFB3806200)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi (20240129)the Postdoctoral Fellowship Program of CPSF (GZC20242285)
文摘Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.
基金supported by the Korea Institute of Science and Technology(KIST)Institutional Program(Project No.2E32501-23-106)the National Research Foundation of Korea(NRF)grant funded by the Korea government(the Ministry of Science,ICT,MSIT)(RS-2022-00165524)+2 种基金the development of technologies for electroceuticals of National Research Foundation(NRF)funded by the Korean government(MSIT)(RS-2023-00220534)ICT Creative Consilience program through the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(IITP-2024-2020-0-01819)Start up Pioneering in Research and Innovation(SPRINT)through the Commercialization Promotion Agency for R&D Outcomes(COMPA)grant funded by the Korea government(Ministry of Science and ICT)(1711198921).
文摘Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots,although most studies are limited to designs,controls,or physical/mechanical motions.Here,we present a transformable,reconfigurable robotic platform created by the integration of magnetically responsive soft composite matrices with deformable multifunctional electronics.Magnetic compounds engineered to undergo phase transition at a low temperature can readily achieve reversible magnetization and conduct various changes of motions and shapes.Thin and flexible electronic system designed with mechanical dynamics does not interfere with movements of the soft electronic robot,and the performances of wireless circuit,sensors,and devices are independent of a variety of activities,all of which are verified by theoretical studies.Demonstration of navigations and electronic operations in an artificial track highlights the potential of the integrated soft robot for on-demand,environments-responsive movements/metamorphoses,and optoelectrical detection and stimulation.Further improvements to a miniaturized,sophisticated system with material options enable in situ monitoring and treatment in envisioned areas such as biomedical implants.
基金supported by the National Natural Science Foundation of China (Grant Nos. 62005193, 61805129, 62075158, and 11874245)Key Research and Development Program of Shanxi Province (Grant No. 201903D121026)+1 种基金Tianjin Municipal Fund for Distinguished Young Scholars (Grant No. 18JCJQJC45600)partially supported by the Air Force Office of Scientific Research and the Simons Foundation
文摘Metasurfaces have enabled the realization of several optical functionalities over an ultrathin platform,fostering the exciting field of flat optics.Traditional metasurfaces are achieved by arranging a layout of static meta-atoms to imprint a desired operation on the impinging wavefront,but their functionality cannot be altered.Reconfigurability and programmability of metasurfaces are the next important step to broaden their impact,adding customized on-demand functionality in which each meta-atom can be individually reprogrammed.We demonstrate a mechanical metasurface platform with controllable rotation at the meta-atom level,which can implement continuous Pancharatnam–Berry phase control of circularly polarized microwaves.As the proof-of-concept experiments,we demonstrate metalensing,focused vortex beam generation,and holographic imaging in the same metasurface template,exhibiting versatility and superior performance.Such dynamic control of electromagnetic waves using a single,low-cost metasurface paves an avenue towards practical applications,driving the field of reprogrammable intelligent metasurfaces for a variety of applications.
基金supported by the National Natural Science Foundation of China(NSFC)(61871338 and 61721001)。
文摘Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred polarization can be produced from a set of multiple polarization states,thus improving the quality of the communication link.This paper presents a new concept of a polarization programmable reconfigurable antenna array that consists of a number of polarization reconfigurable antenna elements with a finite number of possible polarization states.By employing a new optimization strategy and programming the polarization states of all the array elements,we demonstrate that it is possible to realize any desired LP in the vectorial array radiation pattern with accurate control of sidelobe and crosspolarization levels(XPLs),thereby achieving the desired polarization to perfectly match that of the required communications signal.Both numerical and experimental results are provided to prove the concept,and they agree well with each other.
基金Key Research and Development Program of China(2017YA0700201,2017YFA0700202,and 2017YFA0700201)National Natural Science Foundation of China(61631007,61571117,61501112,61501117,61522106,617310061735010,61722106,61701107,and 61701108)111 Project(111-2-05)Fund for International Cooperation and Exchange of National Natural Science Foundation of China(61761136007)。
文摘Over the past 5 years,digital coding and programmable metamaterials have beendeveloped rapidly since their first exhibition in 2014.The iconic feature of the digitalcoding metamaterial is using digital codes like"0"and"1 to represent the distinctelectromagnetic(EM)responses.This seemingly trivial progress has successfullyreform the design theory from the effective medium to coding patterns,bridgingthe physical world and digital information world.More interestingly,beyond thesimple coding on the parameters or patterns,the digital coding metamaterials aremore intend to introduce the concept of direct interactions and operations of digitalinformation within EM fields,to realize infomation processing,transmission orrecognition.Toaccurately exhibit the informational specialties,we classify the codingmetamaterials,digital metamaterials and programmable metamaterials,as well asother information-operating metamaterials,as information metamaterials In thisreview article,we fistly introduce the digital coding concept,working mechanism,and related design methods.Then,three important theories including the scatteringpattem calculation,convolution operationand entropyofdigital codingmetamaterials,arediscussed in details.Finally we introduce several system-level works based on theinfomation metamaterials,such as the new-architecture wireless communication systemsand reprogrammable imaging systems,to show the powerful manipulation capabilities ofinformation metamaterials.As the nextgeneration of infomation metamaterials,two proofof-concept smart metamaterials and their advanced architectures are discussed.In thesummary,the development track of information metamaterials and future trends are presented.
基金National Natural Science Foundation of China under Grant Nos.61971435,62101588,62101589National Key Research and Development Program of China(Grant No.:SQ2017YFA0700201)+1 种基金C.-W.Q.is supported by a grant(R-261-518-004-720|A-0005947-16-00)from Advanced Research and Technology Innovation Centre(ARTIC)in National University of Singapore.
文摘The power of controlling objects with mind has captivated a popular fascination to human beings.One possible path is to employ brain signal collecting technologies together with emerging programmable metasurfaces(PM),whose functions or operating modes can be switched or customized via on-site programming or pre-defined software.Nevertheless,most of existing PMs are wire-connected to users,manually-controlled and not real-time.Here,we propose the concept of remotely mind-controlled metasurface(RMCM)via brainwaves.Rather than DC voltage from power supply or AC voltages from signal generators,the metasurface is controlled by brainwaves collected in real time and transmitted wirelessly from the user.As an example,we demonstrated a RMCM whose scattering pattern can be altered dynamically according to the user’s brain waves via Bluetooth.The attention intensity information is extracted as the control signal and a mapping between attention intensity and scattering pattern of the metasurface is established.With such a framework,we experimentally demonstrated and verified a prototype of such metasurface system which can be remotely controlled by the user to modify its scattering pattern.This work paves a new way to intelligent metasurfaces and may find applications in health monitoring,5G/6G communications,smart sensors,etc.
文摘A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 /μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5×2.5 mm2 and the current is 3.5 mA.