期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Elastoplastic analysis of AA7075-O aluminum sheet by hybrid micro-scale representative volume element modeling with really-distributed particles and in-situ SEM experimental testing 被引量:1
1
作者 Qingping Sun Shahryar Asqardoust +1 位作者 Abhishek Sarmah Mukesh K.Jain 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第28期201-221,共21页
This paper addresses the challenge of reconstructing randomly distributed second-phase particlestrengthened microstructure of AA7075-O aluminum sheet material for computational analysis.The particle characteristics in... This paper addresses the challenge of reconstructing randomly distributed second-phase particlestrengthened microstructure of AA7075-O aluminum sheet material for computational analysis.The particle characteristics in 3D space were obtained from focused ion beam and scanning electron microscopy(FIB-SEM)and SEM-based Electron Backscatter Diffraction/Energy Dispersive X-ray Spectrometry(EBSD/EDS)techniques.A theoretical framework for analysis of elastic-plastic deformation of such3D microstructures is developed.Slip-induced shear band formation,void initiation,growth and linkage at large plastic strains during uniaxial tensile loading were investigated based on reconstructed 3D representative volume element(RVE)models with real-distribution of particles and the results compared with experimental observations.In-situ SEM interrupted tension tests along transverse direction(TD)and rolling direction(RD),employing microscopic-digital image correlation(μ-DIC)technique,were carried out to investigate slip bands,micro-voids formation and obtain microstructural strain maps.The resulting local strain maps were analyzed in relation to the experimentally observed plastic flow localization,failure modes and local stress maps from simulations of RVE models.The influences of particle size,shape,orientation,volume fraction as well as matrix-particle interface properties on local plastic deformation,global stress-strain/strain-hardening curves and interfacial failure mechanisms were studied based on 3D RVE models.When possible,the model results were compared with in-situ tensile test data.In general,good agreement was observed,indicating that the real 3D microstructure-based RVE models can accurately predict the plastic deformation and interfacial failure evolution in AA7075-O aluminum sheet. 展开更多
关键词 representative volume element AA7075-O aluminum sheet In-situ SEM Microscopic-digital image correlation(μ-DIC) Elastoplastic behavior
原文传递
Multi-scale finite element simulation on large deformation behavior of wood under axial and transverse compression conditions 被引量:7
2
作者 Weizhou Zhong Zexiong Zhang +3 位作者 Xiaowei Chen Qiang Wei Gang Chen Xicheng Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第7期1136-1151,I0002,共17页
Multi-scale finite element method is adopted to simulate wood compression behavior under axial and transverse loading. Representative volume elements (RVE) of wood microfibril and cell are proposed to analyze orthotro... Multi-scale finite element method is adopted to simulate wood compression behavior under axial and transverse loading. Representative volume elements (RVE) of wood microfibril and cell are proposed to analyze orthotropic mechanical behavior. Lignin, hemicellulose and crystalline-amorphous cellulose core of spruce are concerned in spruce nanoscale model. The equivalent elastic modulus and yield strength of the microfibril are gained by the RVE simulation. The anisotropism of the crystalline-amorphous cellulose core brings the microfibril buckling deformation during compression loading. The failure mechanism of the cell-wall under axial compression is related to the distribution of amorphous cellulose and crystalline cellulose. According to the spruce cell observation by scanning electron microscope, numerical model of spruce cell is established using simplified circular hole and regular hexagon arrangement respectively. Axial and transverse compression loadings are taken into account in the numerical simulations. It indicates that the compression stress-strain curves of the numerical simulation are consistent with the experimental results. The wood microstructure arrangement has an important effect on the stress plateau during compression process. Cell-wall buckling in axial compression induces the stress value drops rapidly. The wide stress plateau duration means wood is with large energy dissipation under a low stress level. The numerical results show that loading velocity affects greatly wood microstructure failure modes in axial loading. For low velocity axial compression, shear sliding is the main failure mode. For high velocity axial compression, wood occur fold and collapse. In transverse compression, wood deformation is gradual and uniform, which brings stable stress plateau. 展开更多
关键词 Multi-scale model representative volume element Spruce Energy dissipation Wood cell
原文传递
Multi-scale damage and fracture analysis and statistical damage constitutive model of shallow coral reef limestone based on digital core
3
作者 Yingwei Zhu Xinping Li +4 位作者 Zhengrong Zhou Dengxing Qu Fei Meng Shaohua Hu Wenjie Li 《International Journal of Mining Science and Technology》 2025年第11期1849-1869,共21页
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime... Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL. 展开更多
关键词 Coral reef limestone Multi-scale mechanics Digital core Pore structure representative volume element Damage and fracture Damage statistical constitutive model
在线阅读 下载PDF
Numerical Homogenization Approach for the Analysis of Honeycomb Sandwich Shell Structures
4
作者 Martina Rinaldi Stefano Valvano +1 位作者 Francesco Tornabene Rossana Dimitri 《Computers, Materials & Continua》 2025年第5期2403-2428,共26页
This study conducts a thorough examination of honeycomb sandwich panels with a lattice core,adopting advanced computational techniques for their modeling.The research extends its analysis to investigate the natural fr... This study conducts a thorough examination of honeycomb sandwich panels with a lattice core,adopting advanced computational techniques for their modeling.The research extends its analysis to investigate the natural frequency behavior of sandwich panels,encompassing the comprehensive assessment of the entire panel structure.At its core,the research applies the Representative Volume Element(RVE)theory to establish the equivalent material properties,thereby enhancing the predictive capabilities of lattice structure simulations.Themethodology applies these properties in the core of infinite panels,which are modeled using double periodic boundary conditions to explore their natural frequencies.Expanding beyond mere material characterization,the study introduces a novel approach to defining the material within the panel cores.By incorporating alternate materials such as steel and AlSiC,and by strategically modifying their ratios,the research streamlines the process of material variation without resorting to repetitive 3D operations on the constituent cells.This optimizes not only the computational resources but also offers insights into the structural response under diverse material compositions.Furthermore,the investigation extends its scope to analyze the influence of curvature on the structural behavior of lattice structures.Panels are modeled with varying degrees of curvature,ranging from single to double curvatures,including cylindrical and spherical configurations,across a spectrum of radii.A rigorous analysis is performed to study the effect of curvature on the mechanical performance and stability of lattice structures,offering valuable insights for design optimization and structural engineering applications.By building upon the existing knowledge and introducing innovative methodologies,this study contributes to improving the understanding of lattice structures and their applicability in diverse engineering contexts. 展开更多
关键词 Sandwich panels finite element method homogenization theories HONEYCOMB representative volume element
在线阅读 下载PDF
Experimental and Numerical Investigations of Carbon-based Nanoparticle Reinforcement on Microstructure and Mechanical Properties of Epoxy Coatings
5
作者 Lu-Yang Xu Xing-Yu Wang +3 位作者 Yi-Zhou Lin Ying Huang Cheng-Cheng Tao Da-Wei Zhang 《Chinese Journal of Polymer Science》 2025年第1期211-224,I0013,共15页
The addition of nanoparticles serves as an effective reinforcement strategy for polymeric coatings,utilizing their unique characteristics as well as extraordinary mechanical,thermal,and electrical properties.The excep... The addition of nanoparticles serves as an effective reinforcement strategy for polymeric coatings,utilizing their unique characteristics as well as extraordinary mechanical,thermal,and electrical properties.The exceptionally high surface-to-volume ratio of nanoparticles imparts remarkable reinforcing potentials,yet it simultaneously gives rise to a prevalent tendency for nanoparticles to agglomerate into clusters within nanocomposites.The agglomeration behavior of the nanoparticles is predominantly influenced by their distinct microstructures and varied weight concentrations.This study investigated the synergistic effects of nanoparticle geometric shape and weight concentration on the dispersion characteristics of nanoparticles and the physical-mechanical performances of nano-reinforced epoxy coatings.Three carbon-based nanoparticles,nanodiamonds(NDs),carbon nanotubes(CNTs),and graphenes(GNPs),were incorporated into epoxy coatings at three weight concentrations(0.5%,1.0%,and 2.0%).The experimental findings reveal that epoxy coatings reinforced with NDs demonstrated the most homogenous dispersion characteristics,lowest viscosity,and reduced porosity among all the nanoparticles,which could be attributed to the spherical geometry shape.Due to the superior physical properties,ND-reinforced nanocomposites displayed the highest abrasion resistance and tensile properties.Specifically,the 1.0wt%ND-reinforced nanocomposites exhibited 60%,52%,and 97%improvements in mass lost,tensile strength,and failure strain,respectively,compared to pure epoxy.Furthermore,the representative volume element(RVE)modeling was employed to validate the experimental results,while highlighting the critical role of nanoparticle agglomeration,orientation,and the presence of voids on the mechanical properties of the nanocomposites.Nano-reinforced epoxy coatings with enhanced mechanical properties are well-suited for application in protective coatings for pipelines,industrial equipment,and automotive parts,where high wear resistance is essential. 展开更多
关键词 Nano-reinforced composite Geometric shape Weight concentration Experimental characterization Finite element analysis(FEA) representative volume element(RVE)modeling
原文传递
Microstructure-property correlation and strain partitioning behavior in medium-carbon carbide-free bainitic steel
6
作者 Ru Su Xiong-wei Zheng +5 位作者 Jie Kang Da-yong Wu Hai-kun Ma Fu-cheng Zhang Zhi-nan Yang Qing Li 《Journal of Iron and Steel Research International》 2025年第7期2039-2053,共15页
The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume ele... The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume element simulations.The results reveal that as the austempering temperature increases from low to intermediate,the optimal balance of properties shifts from strength-toughness to plasticity-toughness.The formation of fine bainitic ferrite plates and bainite sheaves under low austempering temperature(270℃)enhances both strength and toughness.Conversely,the wide size and shape distribution of the retained austenite(RA)obtained through austempering at intermediate temperature(350℃)contribute to increased work-hardening capacity,resulting in enhanced plasticity.The volume fraction of the ductile film-like RA plays a crucial role in enhancing impact toughness under relatively higher austempering temperatures.In the simulations of tensile deformation,the concentration of equivalent plastic strain predominantly manifests in the bainitic ferrite neighboring the martensite,whereas the equivalent plastic strain evenly spreads between the thin film-like retained austenite and bainitic ferrite.It is predicted that the cracks will occur at the interface between martensite and bainitic ferrite where the strain is concentrated,and eventually propagate along the strain failure zone. 展开更多
关键词 Carbide-free bainitic steel STRENGTH Retained austenite representative volume element Strain partitioning
原文传递
Probing local difference of martensite formation: a study on localized deformation modes in drawn 304H stainless steel wires
7
作者 Zhi-xian Peng Rong-zhe Hu +3 位作者 Jing Liu Ke Peng Zhen Wang Zheng-liang Xue 《Journal of Iron and Steel Research International》 2025年第4期991-1002,共12页
304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observati... 304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire. 展开更多
关键词 304H stainless steel wire Deformation-induced martensite transformation Localized deformation representative volume element Cold drawing
原文传递
Multiscale analysis of microstructure-based bending characteristics of advanced high strength dual-phase steel
8
作者 Ming-shuai Huo Hai-bo Xie +10 位作者 Tao Zhang Guan-qiao Su Lian-jie Li Meng-yuan Ren Zhou Li Jing-bao Liu Ting Yang Xi Zhang Yan-bin Du Valerie Linton Zheng-yi Jiang 《Journal of Iron and Steel Research International》 2025年第7期2054-2063,共10页
Different stress states have a significant influence on the magnitude of the microscopic plastic strain and result in the development of the microstructure evolution.As a result,a comprehensive understanding of the di... Different stress states have a significant influence on the magnitude of the microscopic plastic strain and result in the development of the microstructure evolution.As a result,a comprehensive understanding of the different scale variation on microstructure evolution during bending deformation is essential.The advanced high strength dual-phase(DP1180)steel was investigated using multiscale microstructure-based 3D representative volume element(RVE)modelling technology with emphasis on understanding the relationship between the microstructure,localised stress-strain evolution as well as the deformation characteristics in the bending process.It is demonstrated that the localised development in bending can be more accurately described by microscopic deformation when taking into account microstructural properties.Microstructure-based 3D RVEs from each chosen bending condition generally have comparable localisation properties,whilst the magnitudes and intensities differ.In addition,the most severe localised bands are predicted to occur close to the ferrite and martensite phase boundaries where the martensite grains are close together or have a somewhat sharp edge.The numerically predicted results for the microstructure evolution,shear bands development and stress and strain distribution after 3-point bending exhibit a good agreement with the relevant experimental observations. 展开更多
关键词 Advanced high strength dual-phase steel 3D representative volume element Microstructure-based modelling Bending characteristics Multiscaleanalysis
原文传递
Simulations of deformation and damage processes of SiCp/Al composites during tension 被引量:14
9
作者 J.F.Zhang X.X.Zhang +2 位作者 Q.Z.wang B.L.Xiao Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第4期627-634,共8页
The deformation, damage and failure behaviors of 17 vol.% SiCp/2009AI composite were studied by micro- scopic finite element (FE) models based on a representative volume element (RVE) and a unit cell. The RVE havi... The deformation, damage and failure behaviors of 17 vol.% SiCp/2009AI composite were studied by micro- scopic finite element (FE) models based on a representative volume element (RVE) and a unit cell. The RVE having a 3D realistic microstructure was constructed via computational modeling technique, in which an interface phase with an average thickness of 50 nm was generated for assessing the effects of interracial properties. Modeling results showed that the RVE based FE model was more accurate than the unit cell based one. Based on the RVE, the predicted stress-strain curve and the fracture morphology agreed well with the experimental results. Furthermore, lower interface strength resulted in lower flow stress and ductile damage of interface phase, thereby leading to decreased elongation. It was revealed that the stress concentration factor of SiC was -2.0: the average stress in SiC particles reached -1200 MPa, while that of the composite reached -600 MPa. 展开更多
关键词 Metal matrix composites (MMCs) FRACTURE Finite element (FE) analysis Interfacial strength Tensile strength representative volume element (RVE)
原文传递
Multi-scale thermodynamic analysis method for 2D SiC/SiC composite turbine guide vanes 被引量:14
10
作者 Xin LIU Xiuli SHEN +1 位作者 Longdong GONG Peng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期117-125,共9页
Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress flu... Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress fluctuation, the macroscopic method fails to meet the requirements of stress and strain analysis of CMC turbine guide vanes. Furthermore, the complete thermodynamic properties of 2D woven SiC/SiC-CMC cannot be obtained through experimentation, Accordingly, a method to calculate the thermodynamic properties of CMC and analyze multi-scale stress and strain of the turbine guide vanes should be established. In this study, the multi-scale thermodynamic analysis is investigated. The thermodynamic properties of Chemical Vapor Infiltration (CVI) pro- cessed SiC/SiC-CMC are predicted by a Representative Volume Element (RVE) model with porosity, leading to the result that the relative error between the calculated in-plane tensile modulus and the experimental value is 4.2%. The macroscopic response of a guide vane under given conditions is predicted. The relative error between the predicted strain on the trailing edge and the experimental value is 9.7%. The calculation of the stress distribution of micro-scale RVE shows that the maximum value of microscopic stress, which is located in the interlayer matrix, is more than 1.5 times that of macroscopic stress in the same direction and the microscopic stress distribution of the interlayer matrix is related to the pore distribution of the composite. 展开更多
关键词 Ceramic matrix composites Multi-scale representative volume element Thermal-mechanical coupling Turbine guide vane
原文传递
Behaviour of granular matter under gravity-induced stress gradient:A two-dimensional numerical investigation 被引量:7
11
作者 Ruilin Li Guoqing Zhou +4 位作者 Pin-Qiang Mo Matthew R.Hall Jun Chen Daqing Chen Shangyue Cai 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期439-450,共12页
Gravity is the most important load source in mining and geotechnical engineering,which causes both the stress level and stress gradient inside geomaterials.Different from the stress level,the influence of gravity-indu... Gravity is the most important load source in mining and geotechnical engineering,which causes both the stress level and stress gradient inside geomaterials.Different from the stress level,the influence of gravity-induced stress gradient on the behaviour of the material is still unknown.An in-deep study on it will help to promote the understanding of material behaviour,especially for those cases related to unconventional gravity such as terrestrial ng physical modelling and extraterrestrial resource exploitation(g is the terrestrial gravitational acceleration).In this study,a high-order homogenization for granular materials is proposed at first,in which the stress gradient is drawn into the constitutive representation by adopting a representative volume element(RVE).The consolidation and shear strength behaviour of RVE are then investigated by performing numerical biaxial tests.The results show that all the compressibility,shear strength,shear stiffness,volumetric deformation,and critical state behaviour show a stress gradient dependence.A coupling between stress gradient,stress level,and material properties is also observed.These observations suggest that,besides the stress level,extra attention needs to be paid to material responses related to stress gradient during engineering practices. 展开更多
关键词 Stress gradient representative volume element Granular matter Gravitational field Discrete element method
在线阅读 下载PDF
Multiscale Mechanics and Optimization of Gastropod Shells 被引量:6
12
作者 Mostafa Yourdkhani Damiano Pasini Francois Barthelat 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第4期357-368,共12页
A vast majority of mollusks grow a hard shell for protection. The structure of these shells comprises several levels of hierarchy that increase their strength and their resistance to natural threats. This article focu... A vast majority of mollusks grow a hard shell for protection. The structure of these shells comprises several levels of hierarchy that increase their strength and their resistance to natural threats. This article focuses on nacreous shells, which are composed of two distinct layers. The outer layer is made of calcite, which is a hard but brittle material, and the inner layer is made of nacre, a tough and ductile material. The inner and outer layers are therefore made of materials with distinct structures and properties. In this article, we demonstrate that this system is optimum to defeat attacks from predators. A two-scale mod- eling and optimization approach was used. At the macroscale, a two-layer finite element model of a seashell was developed to capture shell geometry. At the microscale, a representative volume element of the microstructure of nacre was used to model the elastic modulus of nacre as well as a multiaxial failure criterion, both expressed as function of microstructural parameters. Experiments were also performed on actual shells of red abalone to validate the results obtained from simulations and gain insight into the way the shell fails under sharp perforation. Both optimization and experimental results revealed that the shell displays optimum performance when two modes of failure coincide within the structure. Finally, guidelines for designing two-layer shells were proposed to improve the performance of engineered protective systems undergoing similar structural and loading conditions. 展开更多
关键词 SEASHELL multiscale modeling representative volume element failure criterion NACRE multiscale optimization
在线阅读 下载PDF
A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites 被引量:6
13
作者 J.F.Zhang X.X.Zhang +3 位作者 H.Andrä Q.Z.Wang B.L.Xiao Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期167-175,共9页
Thermal residual stress and strain(TRSS)in particle reinforced metal matrix composites(PRMMCs)are believed to cause strengthening effects,according to previous studies.Here,the representative volume element(RVE)based ... Thermal residual stress and strain(TRSS)in particle reinforced metal matrix composites(PRMMCs)are believed to cause strengthening effects,according to previous studies.Here,the representative volume element(RVE)based computational homogenization technique was used to study the tensile deformation of PRMMCs with different particle aspect ratios(AR).The influence of TRSS was assessed quantitatively via comparing simulations with or without the cooling process.It was found that the strengthening effect of TRSS was affected by the particle AR.With the average strengthening effect of TRSS,a fast method of introducing the strengthening effect of TRSS to the tensile behavior of PRMMCs was developed.The new method has reduced the computational cost by a factor 2.The effect of TRSS on continuous fiber-reinforced metal matrix composite was found to have a softening-effect during the entire tensile deformation process because of the pre-yield effect caused by the cooling process. 展开更多
关键词 Metal matrix composites(MMC) Finite element analysis(FEA) representative volume element(RVE) Residual stress and strain Aspect ratio
原文传递
Multiscale Homogenization Analysis of Alkali–Silica Reaction (ASR) Effect in Concrete 被引量:2
14
作者 Roozbeh Rezakhani Mohammed Alnaggar Gianluca Cusatis 《Engineering》 SCIE EI 2019年第6期1139-1154,共16页
The alkali silica reaction (ASR) is one of the major long-term deterioration mechanisms occurring in con- crete structures subjected to high humidity levels, such as bridges and dams. ASR is a chemical reaction betwee... The alkali silica reaction (ASR) is one of the major long-term deterioration mechanisms occurring in con- crete structures subjected to high humidity levels, such as bridges and dams. ASR is a chemical reaction between the silica existing inside the aggregate pieces and the alkali ions from the cement paste. This chemical reaction produces ASR gel, which imbibes additional water, leading to gel swelling. Damage and cracking are subsequently generated in concrete, resulting in degradation of its mechanical proper- ties. In this study, ASR damage in concrete is considered within the lattice discrete particle model (LDPM), a mesoscale mechanical model that simulates concrete at the scale of the coarse aggregate pieces. The authors have already modeled successfully ASR within the LDPM framework and they have calibrated and validated the resulting model, entitled ASR-LDPM, against several experimental data sets. In the pre- sent work, a recently developed multiscale homogenization framework is employed to simulate the macroscale effects of ASR, while ASR-LDPM is utilized as the mesoscale model. First, the homogenized behavior of the representative volume element (RVE) of concrete simulated by ASR-LDPM is studied under both tension and compression, and the degradation of effective mechanical properties due to ASR over time is investigated. Next, the developed homogenization framework is utilized to reproduce experimental data reported on the free volumetric expansion of concrete prisms. Finally, the strength degradation of prisms in compression and four-point bending beams is evaluated by both the mesoscale model and the proposed multiscale approach in order to analyze the accuracy and computational ef - ciency of the latter. In all the numerical analyses, different RVE sizes with different inner particle realiza- tions are considered in order to explore their effects on the homogenized response. 展开更多
关键词 Multiscale homogenization representative volume element Alkali–silica reaction Lattice discrete particle model
在线阅读 下载PDF
Influence of Lamellar Direction in Pearlitic Steel Wire on Mechanical Properties and Microstructure Evolution 被引量:1
15
作者 Tian zhang ZHAO Guang-liang ZHANG +1 位作者 Shi hong ZHANG Ling-yun ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第12期1290-1296,共7页
During cold drawing of pearlitic steel wire, the lamellar structure becomes gradually aligned with the draw ing axis, which contributes to the ultra high strength. A direct simulation about the mechanical behaviors an... During cold drawing of pearlitic steel wire, the lamellar structure becomes gradually aligned with the draw ing axis, which contributes to the ultra high strength. A direct simulation about the mechanical behaviors and microstructural evolution of pearlitic lamellae was presented. A representative volume element (RVE) containing one pearlitic colony was established based on the real transmission electron microscope (TEM) observation. The deformation of pearlitic colony during tension, shear and wire drawing were successfully simulated. The numerical results show that this metallographic texture leads to a strong anisotropy. The colony has higher yielding stress when the la mellar direction is parallel and perpendicular to the tensile direction. The lamellar evolution is strongly dependent on the initial direction and deformation mode. The formation of typical period shear bands is analyzed. In the wire draw ing, the pearlitic colony at the sub surface experiences a complex strain path: rotation, stretching along the die sur face, and rotation back. 展开更多
关键词 pearlitic lamellae steel wire DRAWING mechanical property representative volume element
原文传递
The Meso-inhomogeneous Deformation of Pure Copper under Tension-Compression Cyclic Strain Loading 被引量:1
16
作者 Lili Jin Shenghuan Qin +2 位作者 Bin Zeng Yingjun Gao Keshi Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第3期403-417,共15页
The investigation based on experiments and crystal plasticity simulation is carried out to undertake research on mesodeformation inhomogeneity of metals under cyclic loading at grain level.Symmetrical tension-compress... The investigation based on experiments and crystal plasticity simulation is carried out to undertake research on mesodeformation inhomogeneity of metals under cyclic loading at grain level.Symmetrical tension-compression cycle tests are performed on pure copper specimens to observe the inhomogeneous distribution of slip deformation and its evolution with cycle number.Cyclic hardening process and stable hysteretic behavior of pure copper under cyclic loading are simulated by applying a crystal plasticity constitutive model including nonlinear kinematic hardening associated with the polycrystalline representative volume element(RVE)constructed by Voronoi tessellation.Inhomogeneous deformation processes of materials under six different strain amplitudes are simulated by 1600 cycles,respectively.We discuss the variation law of the inhomogeneous meso-deformation distribution of material with the increase in cycle number,and research the rationality of characterizing the inhomogeneous deformation distribution and variation with the statistical standard deviation of the micro-longitudinal strain or the statistical average of the first principal strain based on the statistical analysis of the inhomogeneous deformation of the polycrystalline RVE model during the cycling process.It is found that these two parameters are related to and approximately inversely proportional to the length of measuring gauge. 展开更多
关键词 Strain cycle Deformation inhomogeneity Polycrystalline representative volume element Measuring gauge Crystal plasticity
原文传递
Three Phase Composite Cylinder Assemblage Model for Analyzing the Elastic Behavior of MWCNT-Reinforced Polymers 被引量:1
17
作者 Puneet Kumar J.Srinivas 《Computers, Materials & Continua》 SCIE EI 2018年第1期1-20,共20页
Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube(CNT)reinforced polymer composites recently.This paper presents the composite cylinder as... Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube(CNT)reinforced polymer composites recently.This paper presents the composite cylinder assemblage(CCA)approach based on continuum mechanics for investigating the elastic properties of a polymer resin reinforced by multi-walled carbon nanotubes(MWCNTs).A three-phase cylindrical representative volume element(RVE)model is employed based on CCA technique to elucidate the effects of inter layers,chirality,interspacing,volume fraction of MWCNT,interphase properties and temperature conditions on the elastic modulus of the composite.The interface region between CNT and polymer matrix is modeled as the third phase with varying material properties.The constitutive relations for each material system have been derived based on solid mechanics and proper interfacial traction continuity conditions are imposed.The predicted results from the CCA approach are in well agreement with RVE-based finite element model.The outcomes reveal that temperature softening effect becomes more pronounced at higher volume fractions of CNTs. 展开更多
关键词 Multi-walled carbon nanotube composite cylinder assemblage CONTINUUM representative volume element variable interphase
在线阅读 下载PDF
Stress Analysis of Wire Strands by Mesoscale Mechanics 被引量:1
18
作者 TANG Yougang HE Xin +2 位作者 LI Yan ZHANG Ruoyu HU Zhiqiang 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第5期1118-1132,共15页
Steel wire ropes have wide application in a variety of engineering fields such as ocean engineering and civil engineering.The stress calculation for steel wire ropes is of crucial importance when conducting strength a... Steel wire ropes have wide application in a variety of engineering fields such as ocean engineering and civil engineering.The stress calculation for steel wire ropes is of crucial importance when conducting strength and fatigue analyses.In this study,we performed a finite element analysis of single-strand steel wire ropes.For the geometric modeling,we used an analytic geometry of space method.We established helical line equations and used the coordinates of the contact points.The finite-element model was simplified using the periodic law.Periodic boundary conditions were used to simulate a wire strand of infinite length under tensile strain,for which we calculated the cross-sectional stresses and inner forces.The results showed that bending and torsion moments emerged when the wire strand was under tensile load.In some cases,the bending stress reached 18%of the tensile stress,and the torsion stress reached 29%of the tensile stress,which means that the total stress was higher than the nominal stress.Whereas in ear-lier studies,a conservative prediction of nominal stress was not possible,the results of our strength and fatigue analyses were more conservative. 展开更多
关键词 wire strand finite-element method(FEM) representative volume element(RVE) periodic boundary condition(PBC)
在线阅读 下载PDF
Computational model for short-fiber composites with eigenstrain formulation of boundary integral equations
19
作者 马杭 夏利伟 秦庆华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第6期757-767,共11页
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The... A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure. 展开更多
关键词 short-fiber equivalent inclusion EIGENSTRAIN Eshelby tensor representative volume element boundary integral equation boundary point method
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部