期刊文献+
共找到1,860篇文章
< 1 2 93 >
每页显示 20 50 100
On the representations of string pairs over virtual field
1
作者 TAO Kun FU Chang-Jian 《四川大学学报(自然科学版)》 北大核心 2025年第5期1103-1108,共6页
Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-represent... Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-representation is either a string representation or a band representation by using the coefficient quivers.It is worth noting that for a given band and a positive integer,there exists a unique band representation up to isomorphism. 展开更多
关键词 string pair string representation band representation
在线阅读 下载PDF
Integrating species diversity, ecosystem services, climate and ecological stability helps to improve spatial representation of protected areas for quadruple win
2
作者 Hui Dang Yihe Lü +2 位作者 Xiaofeng Wang Yunqi Hao Bojie Fu 《Geography and Sustainability》 2025年第1期47-57,共11页
Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to... Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to encompass broader considerations such as ecosystem stability, community resilience to climate change, and enhancement of human well-being. Given these multifaceted objectives, it is imperative to judiciously allocate resources to effectively conserve biodiversity by identifying strategically significant areas for conservation, particularly for mountainous areas. In this study, we evaluated the representativeness of the protected area network in the Qin ling Mountains concerning species diversity, ecosystem services, climate stability and ecological stability. The results indicate that some of the ecological indicators are spatially correlated with topographic gradient effects. The conservation priority areas predominantly lie in the northern foothills, the southeastern, and southwestern parts of the Qinling Mountain with areas concentrated at altitudes between 1,500-2,000 m and slopes between 40°-50° as hotspots. The conservation priority areas identified through the framework of inclusive conservation optimization account for 22.9 % of the Qinling Mountain. Existing protected areas comprise only 6.1 % of the Qinling Mountain and 13.18 % of the conservation priority areas. This will play an important role in achiev ing sustainable development in the region and in meeting the post-2020 biodiversity target. The framework can advance the different objectives of achieving a quadruple win and can also be extended to other regions. 展开更多
关键词 Protected areas Nature conservation Ecological representation Qinling Mountains Spatial planning
在线阅读 下载PDF
Face recognition algorithm using collaborative sparse representation based on CNN features
3
作者 ZHAO Shilin XU Chengjun LIU Changrong 《Journal of Measurement Science and Instrumentation》 2025年第1期85-95,共11页
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac... Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods. 展开更多
关键词 sparse representation deep learning face recognition dictionary update feature extraction
在线阅读 下载PDF
Automatic clustering of single-molecule break junction data through task-oriented representation learning
4
作者 Yi-Heng Zhao Shen-Wen Pang +4 位作者 Heng-Zhi Huang Shao-Wen Wu Shao-Hua Sun Zhen-Bing Liu Zhi-Chao Pan 《Rare Metals》 2025年第5期3244-3257,共14页
Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature ... Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data. 展开更多
关键词 Single-molecule conductance Break junction Deep clustering representation learning Neural architecture search
原文传递
FDCPNet:feature discrimination and context propagation network for 3D shape representation
5
作者 Weimin SHI Yuan XIONG +2 位作者 Qianwen WANG Han JIANG Zhong ZHOU 《虚拟现实与智能硬件(中英文)》 2025年第1期83-94,共12页
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or ... Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity. 展开更多
关键词 3D shape representation Mesh model MeshNet Feature discrimination Context propagation
在线阅读 下载PDF
Phase classification of high entropy alloys with composition,common physical,elemental-property descriptors and periodic table representation
6
作者 Shuai LI Jia YANG +2 位作者 Shu LI Dong-rong LIU Ming-yu ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第6期1855-1874,共20页
Phase classification has a clear guiding significance for the design of high entropy alloys.For mutually exclusive and non-mutually exclusive classifications,the composition descriptors,commonly used physical paramete... Phase classification has a clear guiding significance for the design of high entropy alloys.For mutually exclusive and non-mutually exclusive classifications,the composition descriptors,commonly used physical parameter descriptors,elemental-property descriptors,and descriptors extracted from the periodic table representation(PTR)by the convolutional neural network were collected.Appropriate selection among features with rich information is helpful for phase classification.Based on random forest,the accuracy of the four-label classification and balanced accuracy of the five-label classification were improved to be 0.907 and 0.876,respectively.The roles of the four important features were summarized by interpretability analysis,and a new important feature was found.The model extrapolation ability and the influence of Mo were demonstrated by phase prediction in(CoFeNiMn)_(1-x)Mo_(x).The phase information is helpful for the hardness prediction,the classification results were coupled with the PTR of hardness data,and the prediction error(the root mean square error)was reduced to 56.69. 展开更多
关键词 high entropy alloy phase classification feature engineering periodic table representation convolutional neural network hardness prediction
在线阅读 下载PDF
Correction to DeepCNN:Spectro-temporal feature representation for speech emotion recognition
7
《CAAI Transactions on Intelligence Technology》 2025年第2期633-633,共1页
Saleem,N.,et al.:DeepCNN:Spectro-temporal feature representation for speech emotion recognition.CAAI Trans.Intell.Technol.8(2),401-417(2023).https://doi.org/10.1049/cit2.12233.The affiliation of Hafiz Tayyab Rauf shou... Saleem,N.,et al.:DeepCNN:Spectro-temporal feature representation for speech emotion recognition.CAAI Trans.Intell.Technol.8(2),401-417(2023).https://doi.org/10.1049/cit2.12233.The affiliation of Hafiz Tayyab Rauf should be[Independent Researcher,UK]. 展开更多
关键词 independent researcher speech emotion recognition deep cnn uk speech emotion recognitioncaai spectro temporal feature representation hafiz tayyab rauf
在线阅读 下载PDF
Improved Gabor transform and group sparse representation for ancient mural inpainting
8
作者 ZHAO Mengxue CHEN Yong TAO Meifeng 《Journal of Measurement Science and Instrumentation》 2025年第3期384-394,共11页
Sparse representation has been highly successful in various tasks related to image processing and computer vision.For ancient mural image inpainting,traditional group sparse representation models usually lead to struc... Sparse representation has been highly successful in various tasks related to image processing and computer vision.For ancient mural image inpainting,traditional group sparse representation models usually lead to structure blur and line discontinuity due to the construction of similarity group solely based on the Euclidean distance and the randomness of dictionary initialization.To address the aforementioned issues,an improved curvature Gabor transform and group sparse representation(CGabor-GSR)model for ancient Dunhuang mural inpainting is proposed.To begin with,mutual information is introduced to weight the Euclidean distance,and then the weighted Euclidean distance acts as a new standard of similarity group.Subsequently,to mitigate the randomness of dictionary initialization,a curvature Gabor wavelet transform is proposed to extract the features and initialize the feature dictionary with dimension reduction based on principal component analysis(PCA).Ultimately,singular value decomposition(SVD)and split Bregman iteration(SBI)can be used to resolve the CGabor-GSR model to reconstruct the mural images.Experimental results on Dunhuang mural inpainting demonstrate tha the proposed CGabor-GSR achieves a better performance than compared algorithms in both objective and visual evaluation. 展开更多
关键词 digital image processing mural inpainting curvature Gabor wavelet transform group sparse representation mutual information
在线阅读 下载PDF
Advances in small molecule representations and AI-driven drug research:bridging the gap between theory and application
9
作者 Junxi Liu Shan Chang +2 位作者 Qingtian Deng Yulian Ding Yi Pan 《Chinese Journal of Natural Medicines》 2025年第11期1391-1408,共18页
Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify effective drug precursors while optimizing costs and accelerating development processes.Digital molecular representation plays ... Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify effective drug precursors while optimizing costs and accelerating development processes.Digital molecular representation plays a crucial role in achieving this objective by making molecules machine-readable,thereby enhancing the accuracy of molecular prediction tasks and facilitating evidence-based decision making.This study presents a comprehensive review of small molecular representations and AI-driven drug discovery downstream tasks utilizing these representations.The research methodology begins with the compilation of small molecule databases,followed by an analysis of fundamental molecular representations and the models that learn these representations from initial forms,capturing patterns and salient features across extensive chemical spaces.The study then examines various drug discovery downstream tasks,including drug-target interaction(DTI)prediction,drug-target affinity(DTA)prediction,drug property(DP)prediction,and drug generation,all based on learned representations.The analysis concludes by highlighting challenges and opportunities associated with machine learning(ML)methods for molecular representation and improving downstream task performance.Additionally,the representation of small molecules and AI-based downstream tasks demonstrates significant potential in identifying traditional Chinese medicine(TCM)medicinal substances and facilitating TCM target discovery. 展开更多
关键词 Small molecular representation Drug-target interaction prediction Drug-target affinity prediction Drug property prediction De novo drug generation Traditional Chinese medicine
原文传递
A Mask-Guided Latent Low-Rank Representation Method for Infrared and Visible Image Fusion
10
作者 Kezhen Xie Syed Mohd Zahid Syed Zainal Ariffin Muhammad Izzad Ramli 《Computers, Materials & Continua》 2025年第7期997-1011,共15页
Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images.However,existing method... Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images.However,existing methods often fail to distinguish salient objects from background regions,leading to detail suppression in salient regions due to global fusion strategies.This study presents a mask-guided latent low-rank representation fusion method to address this issue.First,the GrabCut algorithm is employed to extract a saliency mask,distinguishing salient regions from background regions.Then,latent low-rank representation(LatLRR)is applied to extract deep image features,enhancing key information extraction.In the fusion stage,a weighted fusion strategy strengthens infrared thermal information and visible texture details in salient regions,while an average fusion strategy improves background smoothness and stability.Experimental results on the TNO dataset demonstrate that the proposed method achieves superior performance in SPI,MI,Qabf,PSNR,and EN metrics,effectively preserving salient target details while maintaining balanced background information.Compared to state-of-the-art fusion methods,our approach achieves more stable and visually consistent fusion results.The fusion code is available on GitHub at:https://github.com/joyzhen1/Image(accessed on 15 January 2025). 展开更多
关键词 Infrared and visible image fusion latent low-rank representation saliency mask extraction weighted fusion strategy
在线阅读 下载PDF
An adaptive representational account of predictive processing in human cognition
11
作者 Zhichao Gong Yidong Wei 《Cultures of Science》 2025年第1期3-11,共9页
As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science rese... As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science research.The predictive processing theory advocates that the brain is a hierarchical predictive model based on Bayesian inference,and its purpose is to minimize the difference between the predicted world and the actual world,so as to minimize the prediction error.Predictive processing is therefore essentially a context-dependent model representation,an adaptive representational system designed to achieve its cognitive goals through the minimization of prediction error. 展开更多
关键词 Predictive processing Bayesian inference adaptive representation
在线阅读 下载PDF
LatentPINNs:Generative physics-informed neural networks via a latent representation learning
12
作者 Mohammad H.Taufik Tariq Alkhalifah 《Artificial Intelligence in Geosciences》 2025年第1期155-165,共11页
Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the... Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training. 展开更多
关键词 Physics-informed neural networks PDE solvers Latent representation learning
在线阅读 下载PDF
The cultures of science quadrant:Scientific representations,practices and conventions in the East and West
13
作者 Luke J Buhagiar Stavroula Tsirogianni Gordon Sammut 《Cultures of Science》 2025年第2期140-155,共16页
This paper considers the notions of common sense and interobjectivity to articulate an understanding of how different cultural realities give rise to different construals of scientific phenomena across distinct cultur... This paper considers the notions of common sense and interobjectivity to articulate an understanding of how different cultural realities give rise to different construals of scientific phenomena across distinct cultures. Our main focus in this paper is on the social sciences. We propose a quadrant of different cultural–scientific stances from which the study of social phenomena is possible, based on the emic–etic dimension pertaining to the study of culture from contrasting perspectives. Although the emic–etic distinction is normal y applied in fields within the science of culture, it is proposed here that the distinction is in some ways germane to scientific practice in general, making it amenable for use in a culture of science(CoS) programme. The four perspectives that emerge from the quadrant are illustrated using exemplars. Different aspects of CoS—that is, scientific practice, scientific conventions and representations of science—are then discussed in further detail, including in two tables illustrating points of convergence and divergence between the East and West when it comes to different aspects of CoS. 展开更多
关键词 Science culture EMIC etic interobjectivity common sense culture of science representationS CONVENTIONS scientific practice
在线阅读 下载PDF
MMHCA:Multi-feature representations based on multi-scale hierarchical contextual aggregation for UAV-view geo-localization
14
作者 Nanhua CHEN Tai-shan LOU Liangyu ZHAO 《Chinese Journal of Aeronautics》 2025年第6期517-532,共16页
In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e... In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation. 展开更多
关键词 Geo-localization Image retrieval UAV Hierarchical contextual aggregation Multi-feature representations
原文传递
IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations
15
作者 Yajing Ma Gulila Altenbek Yingxia Yu 《Computers, Materials & Continua》 SCIE EI 2024年第1期695-712,共18页
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr... Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness. 展开更多
关键词 Knowledge reasoning entity and relation representation structural dependency relationship evolutionary representation temporal graph convolution
在线阅读 下载PDF
Intelligent representation method of image flatness for cold rolled strip 被引量:2
16
作者 Yang-huan Xu Dong-cheng Wang +1 位作者 Hong-min Liu Bo-wei Duan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第5期1177-1195,共19页
Real flatness images are the bases for flatness detection based on machine vision of cold rolled strip.The characteristics of a real flatness image are analyzed,and a lightweight strip location detection(SLD)model wit... Real flatness images are the bases for flatness detection based on machine vision of cold rolled strip.The characteristics of a real flatness image are analyzed,and a lightweight strip location detection(SLD)model with deep semantic segmentation networks is established.The interference areas in the real flatness image can be eliminated by the SLD model,and valid information can be retained.On this basis,the concept of image flatness is proposed for the first time.An image flatness representation(IFAR)model is established on the basis of an autoencoder with a new structure.The optimal structure of the bottleneck layer is 16×16×4,and the IFAR model exhibits a good representation effect.Moreover,interpretability analysis of the representation factors is carried out,and the difference and physical meaning of the representation factors for image flatness with different categories are analyzed.Image flatness with new defect morphologies(bilateral quarter waves and large middle waves)that are not present in the original dataset are generated by modifying the representation factors of the no wave image.Lastly,the SLD and IFAR models are used to detect and represent all the real flatness images on the test set.The average processing time for a single image is 11.42 ms,which is suitable for industrial applications.The research results provide effective methods and ideas for intelligent flatness detection technology based on machine vision. 展开更多
关键词 Cold rolled strip Image flatness Location detection representation learning Bottleneck layer
原文传递
Localization in modified polar representation: hybrid measurements and closed-form solution 被引量:2
17
作者 CONG Xunchao SUN Yimao +2 位作者 YANG Yanbing ZHANG Lei CHEN Liangyin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期575-588,共14页
Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) u... Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier. 展开更多
关键词 LOCALIZATION modified polar representation time difference of arrival(TDOA) angle of arrival(AOA) closed-form solution
在线阅读 下载PDF
HCRVD: A Vulnerability Detection System Based on CST-PDG Hierarchical Code Representation Learning 被引量:1
18
作者 Zhihui Song Jinchen Xu +1 位作者 Kewei Li Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第6期4573-4601,共29页
Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representation... Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality. 展开更多
关键词 Vulnerability detection deep learning CST-PDG code representation tree-graph-gated-attention network CROSS-LANGUAGE
在线阅读 下载PDF
Sparse representation scheme with enhanced medium pixel intensity for face recognition 被引量:1
19
作者 Xuexue Zhang Yongjun Zhang +3 位作者 Zewei Wang Wei Long Weihao Gao Bob Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期116-127,共12页
Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in ... Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms. 展开更多
关键词 computer vision face recognition image classification image representation
在线阅读 下载PDF
Multi-Modal Medical Image Fusion Based on Improved Parameter Adaptive PCNN and Latent Low-Rank Representation 被引量:1
20
作者 Zirui Tang Xianchun Zhou 《Instrumentation》 2024年第2期53-63,共11页
Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ... Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes. 展开更多
关键词 image fusion improved parameter adaptive pcnn non-subsampled shear-wave transform latent low-rank representation
原文传递
上一页 1 2 93 下一页 到第
使用帮助 返回顶部