Polymeric materials which can undergo controlled degradation and recycling are of great significance for a sustainable society.Although tremendous progress has been made in the degradation and recycling of both thermo...Polymeric materials which can undergo controlled degradation and recycling are of great significance for a sustainable society.Although tremendous progress has been made in the degradation and recycling of both thermoplastic and thermoset plastics,the development of high-performance degradable polymer adhesives is rare.Here,we have prepared high-performance nucleobase-containing thioctic acid-based supramolecular polymer adhesives through free radical polymerization.The specific hydrogen-bonding interactions between complementary nucleobases greatly improve the weak cohesion of the thioctic acid-based polymers and enhance the environmental stability of the thioctic acidbased polymers simultaneously.Degradation of the nucleobase-containing thioctic acid-based supramolecular polymers is achieved by the reduction of the disulfide backbone,and the cycle of degradation and repolymerization is further achieved via oxidative polymerization.The adhesion strength of the nucleobase-containing thioctic acid-based supramolecular polymers after two cycles of degradation and repolymerization still reaches as high as 4.7±0.3 MPa.This work provides an approach for the development of environmentally stable and high-performance degradable thioctic acid-based adhesives.展开更多
Hydrothermal pretreatment of poplar wood chips was performed in an acetic acid/sodium acetate buffer medium.To characterize the structural changes of lignin in the pretreatment process,milled wood lignin(MWL)was isola...Hydrothermal pretreatment of poplar wood chips was performed in an acetic acid/sodium acetate buffer medium.To characterize the structural changes of lignin in the pretreatment process,milled wood lignin(MWL)was isolated from both the un-treated and treated poplar wood chips,and analyzed by ^(1)H-NMR,^(13)C-NMR,^(31)P-NMR,FT-IR,and GPC-MALLS.Results showed that the lignin in the pretreated wood chips had more phenolic OH groups,less aliphatic OH groups,higher molecular weight,and narrower polydispersity,in comparison with the lignin in the un-treated wood.The acetic acid-sodium acetate buffer pretreatment facilitated the removal of-OCH_(3) groups and the cleavage of the inter-unit linkages ofβ-O-4 bond in the lignin.Furthermore,the re-polymerization of lignin in the acetic acid-sodium acetate buffer pretreatment was found to be less than that in autohydrolysis.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22273098,22373003,22103002 and 52033001)the Key Project of Anhui Province Science and Technology Innovation Platform(No.202305a12020030)the financial support from the Anhui Provincial Natural Science Foundation(No.2408085Y004)。
文摘Polymeric materials which can undergo controlled degradation and recycling are of great significance for a sustainable society.Although tremendous progress has been made in the degradation and recycling of both thermoplastic and thermoset plastics,the development of high-performance degradable polymer adhesives is rare.Here,we have prepared high-performance nucleobase-containing thioctic acid-based supramolecular polymer adhesives through free radical polymerization.The specific hydrogen-bonding interactions between complementary nucleobases greatly improve the weak cohesion of the thioctic acid-based polymers and enhance the environmental stability of the thioctic acidbased polymers simultaneously.Degradation of the nucleobase-containing thioctic acid-based supramolecular polymers is achieved by the reduction of the disulfide backbone,and the cycle of degradation and repolymerization is further achieved via oxidative polymerization.The adhesion strength of the nucleobase-containing thioctic acid-based supramolecular polymers after two cycles of degradation and repolymerization still reaches as high as 4.7±0.3 MPa.This work provides an approach for the development of environmentally stable and high-performance degradable thioctic acid-based adhesives.
基金support from the National Natural Science Foundation of China (31540009 and 31370581)the Yellow River Mouth Scholar Program (DYRC20120105).
文摘Hydrothermal pretreatment of poplar wood chips was performed in an acetic acid/sodium acetate buffer medium.To characterize the structural changes of lignin in the pretreatment process,milled wood lignin(MWL)was isolated from both the un-treated and treated poplar wood chips,and analyzed by ^(1)H-NMR,^(13)C-NMR,^(31)P-NMR,FT-IR,and GPC-MALLS.Results showed that the lignin in the pretreated wood chips had more phenolic OH groups,less aliphatic OH groups,higher molecular weight,and narrower polydispersity,in comparison with the lignin in the un-treated wood.The acetic acid-sodium acetate buffer pretreatment facilitated the removal of-OCH_(3) groups and the cleavage of the inter-unit linkages ofβ-O-4 bond in the lignin.Furthermore,the re-polymerization of lignin in the acetic acid-sodium acetate buffer pretreatment was found to be less than that in autohydrolysis.