AIM: To evaluate the in vitro anti-HBV activity of recombinant human IFN-γ, alone and in combination with lamivudine. METHODS: A recombinant baculovirus-HBV/HepG2 culture system was developed which could support prod...AIM: To evaluate the in vitro anti-HBV activity of recombinant human IFN-γ, alone and in combination with lamivudine. METHODS: A recombinant baculovirus-HBV/HepG2 culture system was developed which could support productive HBV infection in vitro. Expression of HBsAg and HBeAg in infected HepG2 culture medium was detected by commercial enzyme immunoassays. HBV DNA replication intermediates were detected in infected cells by Southern hybridization and viral DNA load was determined by dot hybridization. RESULTS: IFN-γat 0.1 to 5μg/L efficiently down regulated HBsAg expression in transduced HepG2 cells. At 5μg/L, IFN-γalso suppressed HBV DNA replication in these cells. While treatment with a combination of lamivudine and IFN-γshowed no additive effect, sequential treatment first with lamivudine and then IFN-γwas found to be promising. In this culture system the best HBV suppression was observed with a pulse of 2μmol/L lamivudine for two days, followed by 1μg/L IFN-γfor another four days. Compared to treatment with lamivudine alone, the sequential use of 0.2μmol/L lamivudine for two days, followed by 5μg/L IFN-γfor six days showed a 72% reduction in HBV cccDNA pool. CONCLUSION: This in vitro study warrants further evaluation of a combination of IFN-γand lamivudine, especially in IFN-αnon-responder chronic hepatitis B patients. A reduced duration of lamivudine treatment would also restrict the emergence of drug-resistant HBV mutants.展开更多
AIM: To develop a conditionally replicative gene-viral vector system called CNHK500-p53, which contains dual promoters within the E1 region, and combines the advantages of oncolytic virus and gene therapies for hepat...AIM: To develop a conditionally replicative gene-viral vector system called CNHK500-p53, which contains dual promoters within the E1 region, and combines the advantages of oncolytic virus and gene therapies for hepatocellular carcinoma (HCC). METHODS: CNHK500-p53 was constructed by using human telomerase reverse transcriptase (hTERT) promoter to drive adenovirus E1a gene and hypoxia response element (HRE) promoter to drive adenovirus E1b gene. p53 gene expressing cassette was inserted into the genome of replicative virus. Viral replication experiments, cytopathic effect (CPE) and methyl thiazolyl tetrazolium (MTT) assay were performed to test the selective replication and oncolytic efficacy of CNHK500-p53. RESULTS: Immunohistochemistry verified that infection with CNHK500-p53 was associated with selective replication of adenovirus and production of p53 protein in telomerase-positive and hypoxia-inducible factordependent HCC cells, p53 protein secreted from HepG2, infected with CNHK500-p53 was significantly higher than that infected with nonreplicative adenovirus Ad-p53 in vitro (388 ± 34.6 μg/L vs 76.3 ± 13.17 μg/L). Viral replication experiments showed that replication of CNHK500-p53 and CNHK500 or WtAd5, was much stronger than that of Ad-p53 in tested HCC cell lines. CPE and H1-F assay indicated that CNHK500-p53 selectively replicated in and killed HCC cells while leaving normal cells unaffected. CONCLUSION: A more efficient gene-viral system is developed by combining selective oncolysis with exogenous expression of p53 against HCC cells.展开更多
OBJECTIVE: To investigate the dynamic alternations of HBV markers of active HBV replicationrecipients receiving lamivudine prophylaxis after liver transplantation.METHODS: Serial liver biopsy samples and sera were obt...OBJECTIVE: To investigate the dynamic alternations of HBV markers of active HBV replicationrecipients receiving lamivudine prophylaxis after liver transplantation.METHODS: Serial liver biopsy samples and sera were obtained from 15 recipients and examined withenzyme-linked radioinmmunoassay for HBsAg, HBeAg, HBsAb, HBcAb and HBeAb, and fluorescentquantitative assay for quantitation of HBV DNA in serum. Immunohistochemical staining of HBsAg,HBcAg and HBV DNA hybridization in situ were used to detect HBV markers in liver biopsy samples.RESULTS: 100 mg lamivudine taken orally every, day for 2 weeks before transplantation enabled 12(80%) of 15 active viral replication recipients (HBV DNA positive) to converse to HBV DNA negative.HBsAb, HBcAb and HBeAb in serum emerged in 1-2 weeks after liver transplantation, and disappearedgradually within 6 months; HBV DNA fluorescent quantitative assay showed constant negativity in serum.Immunohistochemical staining of HBsAg, HBcAg and HBV DNA hybridization in situ in liver biopsysamples showed negative results synchorously. Eight of the 15 HBV active replication recipients lostHBV markers thoroughly both in serology and tissue staining as well as HBV DNA hybridization in situ ofserial liver biopsy samples from 12 to 44 weeks after liver transplantation. Should any of HBsAg, HBeAgin serology and HBsAg, HBcAg in immunohistochemical staining was positive, or HBV DNA detectablein serum, or HBV DNA hybridization in situ in liver tissue positive, allograft HBV reinfection or De novoliver allograft infection could be diagnosed. Furthermore, if associated with elevation of ALT andbilirubin, the diagnosis of HBV hepatitis recurrence could be established.CONCLUSION: Allograft HBV reinfection or De nuvo liver allograft infection in active viral replicationrecipients could be prevented with lamivudine regimen, and further clearance of HBV may be possible ifproper measures are taken.展开更多
Perinatal transmission of Human immunodeficiency virus(HIV),also called mother-to-child transmission(MTCT),accounts for 90% of infections in infants worldwide and occurs in 30%-45% of children born to untreated HIV-1 ...Perinatal transmission of Human immunodeficiency virus(HIV),also called mother-to-child transmission(MTCT),accounts for 90% of infections in infants worldwide and occurs in 30%-45% of children born to untreated HIV-1 infected mothers.Among HIV-1 infected mothers,some viruses are transmitted from mothers to their infants while others are not.The relationship between virologic properties and the pathogenesis caused by HIV-1 remains unclear.Previous studies have demonstrated that one obvious source of selective pressure in the perinatal transmission of HIV-1 is maternal neutralizing antibodies.Recent studies have shown that viruses which are successfully transmitted to the child have growth advantages over those not transmitted,when those two viruses are grown together.Furthermore,the higher fitness is determined by the gp120 protein of the virus envelope.This suggests that the selective transmission of viruses with higher fitness occurred exclusively,regardless of transmission routes.There are many factors contributing to the selective transmission and HIV replicative fitness is an important one that should not be neglected.This review summarizes current knowledge of the role of HIV replicative fitness in HIV MTCT transmission and the determinants of viral fitness upon MTCT.展开更多
All non-immortalized mesenchymal stem cells have a limited proliferative potential,that is,replicative senescence(RS)is an integral characteristic of the life of all mesenchymal stem cells(MSCs).It is known that one o...All non-immortalized mesenchymal stem cells have a limited proliferative potential,that is,replicative senescence(RS)is an integral characteristic of the life of all mesenchymal stem cells(MSCs).It is known that one of the important signs of RS is a decrease of cell motility,and that violations of migration processes contribute to the deterioration of tissue regeneration.Therefore,the characterization of the properties of the cell line associated with RS is a prerequisite for the effective use of MSCs in restorative medicine.One of the key proteins regulating cell motility is the small GTPase RhoA.The main purpose of this work was to study the nuclear-cytoplasmic redistribution of the RhoA protein during RS in MSC lines recently obtained and characterized in our laboratory.The study found that a comparative analysis of the intracellular localization of RhoA in three cell lines(MSCWJ-1,FetMSC,DF2)showed a decrease in the nuclear localization of RhoA during RS.展开更多
In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our...In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.展开更多
Background The accumulation of free radicals and advanced glycation end products (AGEs) in cell plays a very important role in replicative senescence. Aminoguanidine (AG) has potential antioxidant effects and decr...Background The accumulation of free radicals and advanced glycation end products (AGEs) in cell plays a very important role in replicative senescence. Aminoguanidine (AG) has potential antioxidant effects and decreases AGE levels. This study aimed to investigate its effect on replicative senescence in vitro. Methods The effects of aminoguanidine on morphology, replicative lifespan, cell growth and proliferation, AGEs, DNA damage, DNA repair ability and telomere length were observed in human fetal lung diploid fibroblasts (2BS). Results Aminoguanidine maintained the non-senescent phenotype of 2BS cells even at late population doubling (PD) and increased cumulative population doublings by at least 17-21 PDs. Aminoguanidine also improved the potentials of growth and proliferation of 2BS cells as detected by the MTT assay. The AGE levels of late PD cells grown from early PD in DMEM containing aminiguanidine decreased significantly compared with those of late PD control cells and were similar to those of young control cells. In addition, the cells pretreated with aminoguanidine had a significant reduction in DNA strand breaks when they were exposed to 200 μmol/L H2O2 for 5 minutes which indicated that the compound had a strong potential to protect genomic DNA against oxidative stress. And most of the cells exposed to 100 μmol/L H2O2 had much shorter comet tails and smaller tail areas after incubation with aminoguanidine-supplemented DMEM, which indicated that the compound strongly improved the DNA repair abilities of 2BS cells. Moreover, PD55 cells grown from PD28 in 2 mmol/L or 4 mmol/L aminoguanidine retain telomere lengths of 7.94 kb or 8.12 kb, which was 0.83 kb or 1.11 kb longer than that of the control cells. Conclusion Aminoguanidine delays replicative senescence of 2BS cells and the senescence-delaying effect of aminoguanidine appear to be due to its many biological properties including its potential for proliferation improvement, its inhibitory effect of AGE formation, antioxidant effect, improvement of DNA repair ability and the slowdown of telomere shortening.展开更多
An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential...An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential,as the loss of cached data requires access to data from external storage,which evidently increases the response latency.Typically,replication and erasure code(EC)are two fault-tolerant schemes that pose different trade-offs between access performance and storage usage.To help make the best performance and space trade-off,we design ElasticMem,a hybrid fault-tolerant distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant scheme.ElasticMem exploits a novel EC-oriented replication(EOR)that carefully designs the data placement of replication according to the future data layout of EC to enhance the I/O efficiency of redundancy transition.ElasticMem solves the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data bypassing.It detects correlated read and write requests and serves subsequent read requests with local data.We implement a prototype that realizes ElasticMem based on Memcached.Experiments show that ElasticMem remarkably reduces the time of redundancy transition,the overall latency of correlated concurrent data accesses,and the latency of single data access among them.展开更多
Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(...Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(SSB1 and SSB2).However,the functional divergence of these two SSB copies in plants remains largely unknown,and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete.In this study,phylogenetic,gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants.Based on accurate long-read sequencing results,ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA(mtDNA)and plastid DNA(ptDNA),accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes.Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.展开更多
Ultraviolet nanoimprint lithography(UV-NIL)is a versatile and cost-effective technique for the fabrication of micro-and nanostructures by copying master patterns in a planar or a roll-to-roll process through curing of...Ultraviolet nanoimprint lithography(UV-NIL)is a versatile and cost-effective technique for the fabrication of micro-and nanostructures by copying master patterns in a planar or a roll-to-roll process through curing of a liquid UV-sensitive precursor.For applications with a high pattern complexity,new UV-NIL process chains must be specified.Master fabrication is a challenging part of the development and often cannot be accomplished using a single master fabrication technique.Therefore,an approach combining different patterning fabrication techniques is developed here for polymer masters using laser direct writing and photolithography.The polymer masters produced in this way are molded into inverse silicone stamps that are used for roll-to-roll replication into an acrylate formulation.To fit the required roller size for large-area UV-NIL,several submasters with micrometer-sized dot and line gratings and prism arrays,which have been patterned by these different techniques,are assembled to final size of ~200×600 mm^(2) with an absolute precision of better than 50μm.The size of the submasters allows the use of standard laboratory equipment for patterning and direct writing,thus enabling the fabrication of micro-and even nanostructures when electron-beam writing is utilized.In this way,the effort,time,and costs for the fabrication of masters for UV-NIL processes are reduced,enabling further development for particular structures and applications.Using this approach,patterns fabricated with different laboratory tools are finally replicated by UV-NIL in an acrylate formulation,demonstrating the high quality of the whole process chain.展开更多
The 3CL protease, a highly conserved enzyme in the coronavirus, plays a crucial role in the viral life cycle by facilitating viral replication through precise cleavage of polyproteins. Beyond its proteolytic function,...The 3CL protease, a highly conserved enzyme in the coronavirus, plays a crucial role in the viral life cycle by facilitating viral replication through precise cleavage of polyproteins. Beyond its proteolytic function, the 3CL protease also engages in intricate interactions with host cell proteins involved in critical cellular processes such as transcription, translation, and nuclear-cytoplasmic transport, effectively hijacking cellular machinery to promote viral replication. Additionally, it disrupts innate immune signaling pathways, suppresses interferon activity and cleaves antiviral proteins. Furthermore, it modulates host cell death pathways including pyroptosis and apoptosis, interferes with autophagy and inhibits stress granule formation to maintain viral infection and exacerbate viral pathogenesis. This review highlights the molecular mechanisms by which the 3CL protease orchestrates virus-host interactions, emphasizing its central role in coronavirus pathogenesis and highlighting potential therapeutic targets for future interventions.展开更多
Personal video recorders (PVRs) have altered the way users consume television (TV) content by allowing users to record programs and watch them at their convenience, overcoming the constraints of live broadcasting. How...Personal video recorders (PVRs) have altered the way users consume television (TV) content by allowing users to record programs and watch them at their convenience, overcoming the constraints of live broadcasting. However, standalone PVRs are limited by their individual storage capacities, restricting the number of programs they can store. While online catch-up TV services such as Hulu and Netflix mitigate this limitation by offering on-demand access to broadcast programs shortly after their initial broadcast, they require substantial storage and network resources, leading to significant infrastructural costs for service providers. To address these challenges, we propose a collaborative TV content recording system that leverages distributed PVRs, combining their storage into a virtual shared pool without additional costs. Our system aims to support all concurrent playback requests without service interruption while ensuring program availability comparable to that of local devices. The main contributions of our proposed system are fourfold. First, by sharing storage and upload bandwidth among PVRs, our system significantly expands the overall recording capacity and enables simultaneous recording of multiple programs without the physical constraints of standalone devices. Second, by utilizing erasure coding efficiently, our system reduces the storage space required for each program, allowing more programs to be recorded compared to traditional replication. Third, we propose an adaptive redundancy scheme to control the degree of redundancy of each program based on its evolving playback demand, ensuring high-quality playback by providing sufficient bandwidth for popular programs. Finally, we introduce a contribution-based incentive policy that encourages PVRs to actively participate by contributing resources, while discouraging excessive consumption of the combined storage pool. Through extensive experiments, we demonstrate the effectiveness of our proposed collaborative TV program recording system in terms of storage efficiency and performance.展开更多
When interpreting results,it is imperative to have some understanding of the degree to which the results are replicable.If the results cannot be replicated with independent data,then interpretations from the results b...When interpreting results,it is imperative to have some understanding of the degree to which the results are replicable.If the results cannot be replicated with independent data,then interpretations from the results become questionable.To minimize the potential for misinterpretations,the current study analyzes six time-series derived from globally sampled U-Pb zircon databases–of which,two are independent igneous databases,one being a quasi-independent igneous database,and three being independent detrital databases.These time-series are then analyzed with standard statistical methods to evaluate replicability.The methods include bandpass filtering to transform the raw time-series into stationary sequences,Student’s t-test,Monte Carlo simulations,periodograms from spectral analysis,correlation studies,and correlograms.Each test is designed to determine the replicability of a specific time-series,as well as the replicability of periodicities found from the time-series.The results show at least three key components to assessing replicability:(a)U-Pb igneous and detrital zircon age distributions are highly replicable,(b)time-series replicability gradually deteriorates with age,and(c)replicability is scale dependent,with low frequency cycles being more replicable than high frequency cycles.From the tests,we conclude that four harmonic cycles are highly replicable and statistically significant,these being periodicities of 810,270,90,and 67.5-myr.展开更多
Mitochondria provides adenosine triphosphate for multiple vital movements to ensure tumor cell proliferation.Compared to the broadly used method of inducing DNA replication arrest to kill cancer,inducing mitochondria ...Mitochondria provides adenosine triphosphate for multiple vital movements to ensure tumor cell proliferation.Compared to the broadly used method of inducing DNA replication arrest to kill cancer,inducing mitochondria damage to cause energy shortage is quite promising as it can inhibit tumor cell bioactivities,increase intracellular accumulation of toxic drugs,eventually sensitize chemotherapy and even reverse drug resistance.Breaking the balance of glutathione(GSH)and reactive oxygen species(ROS)contents have been proven efficient in destroying mitochondria respectively.Herein,apigenin,a GSH efflux reagent,and 2-deoxy-5-fluorouridine 5-monophosphate sodium salt(FdUMP)that could induce toxic ROS were co-delivered by constructed lipid nanoparticles,noted as Lip@AF.An immune-checkpoint inhibition reagent CD276 antibody was modified onto the surface of Lip@AF with high reaction specificity(noted asαCD276-Lip@AF)to enhance the recognition of immune cells to tumor.Results showed that the redox balancewas destroyed,leading to severe injury to mitochondria and cell membrane.Furthermore,synergistic DNA/RNA replication inhibition caused by inhibiting the function of thymidylate synthase were observed.Eventually,significantly enhanced cytotoxicity was achieved by combining multiple mechanisms including ferroptosis,apoptosis and pyroptosis.In vivo,strengthen tumor growth inhibitionwas achieved byαCD276-Lip@AF with high biosafety,providing new sights in enhancing chemotherapy sensitiveness and achieving high-performance chemo-immunotherapy.展开更多
Vertical Federated Learning(VFL),which draws attention because of its ability to evaluate individuals based on features spread across multiple institutions,encounters numerous privacy and security threats.Existing sol...Vertical Federated Learning(VFL),which draws attention because of its ability to evaluate individuals based on features spread across multiple institutions,encounters numerous privacy and security threats.Existing solutions often suffer from centralized architectures,and exorbitant costs.To mitigate these issues,in this paper,we propose SecureVFL,a decentralized multi-party VFL scheme designed to enhance efficiency and trustworthiness while guaranteeing privacy.SecureVFL uses a permissioned blockchain and introduces a novel consensus algorithm,Proof of Feature Sharing(PoFS),to facilitate decentralized,trustworthy,and high-throughput federated training.SecureVFL introduces a verifiable and lightweight three-party Replicated Secret Sharing(RSS)protocol for feature intersection summation among overlapping users.Furthermore,we propose a(_(2)^(4))-sharing protocol to achieve federated training in a four-party VFL setting.This protocol involves only addition operations and exhibits robustness.SecureVFL not only enables anonymous interactions among participants but also safeguards their real identities,and provides mechanisms to unmask these identities when malicious activities are performed.We illustrate the proposed mechanism through a case study on VFL across four banks.Finally,our theoretical analysis proves the security of SecureVFL.Experiments demonstrated that SecureVFL outperformed existing multi-party VFL privacy-preserving schemes,such as MP-FedXGB,in terms of both overhead and model performance.展开更多
The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain geno...The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain genomic stability remain unclear.Also,recent studies have uncovered noncanonical roles of ribosome-associated factors in maintaining genomic stability.In this study,somatic skin fibroblasts from the long-lived big-footed bat(Myotis pilosus)were examined,with results showing that bat cells exhibited enhanced RS tolerance compared to mouse cells.Comparative transcriptome analysis under RS conditions revealed pronounced species-specific transcriptional differences,including robust up-regulation of ribosome biogenesis genes in bat cells and a markedly reduced activation of the P53 signaling pathway.These features emphasize a distinct homeostatic strategy in bat cells.Nuclear fragile X mental retardation-interacting protein 1(Nufip1),a ribosome-associated factor highly expressed in bat fibroblasts,was identified as a potential integrator of ribosomal and P53 signaling via its association with ribosomal protein S27-like(Rps27l).These findings provide direct cellular and molecular evidence for a noncanonical RS response in bats,highlighting a deeper understanding of the biological characteristics and genomic maintenance mechanisms of long-lived species.展开更多
BACKGROUND Whether rtS106C+H126Y+D134E/rtS106C+H126Y+D134E+L269I(rtCYE/rtCYEI)mutations in the hepatitis B virus(HBV)reverse-transcriptase(RT)region are associated with tenofovir disoproxil fumarate(TDF)resistance is ...BACKGROUND Whether rtS106C+H126Y+D134E/rtS106C+H126Y+D134E+L269I(rtCYE/rtCYEI)mutations in the hepatitis B virus(HBV)reverse-transcriptase(RT)region are associated with tenofovir disoproxil fumarate(TDF)resistance is controversial.AIM To evaluate the presence of the rtCYE/rtCYEI mutations in a large cohort of Chinese patients with chronic HBV infection.METHODS A total of 28236 patients who underwent drug resistance testing at the Fifth Medical Center of Chinese PLA General Hospital from 2007 to 2019 were enrolled.All patients received nucleoside/nucleotide analogues(NAs)therapy,and serum samples were collected for sequence analysis of the HBV RT domain with mutation analysis.RESULTS The detection rates of a single mutation of rtS106C,rtH126Y,rtD134E,and rtL269I were 8.21%,3.20%,2.55%and 61.49%in 23718 genotype C patients,and 1.31%,1.76%,0.21%,and 92.33%in 4266 genotype B patients,respectively.The combined mutations of rtCYE/rtCYEI were only detected in 12 genotype C patients,accounting for 0.042%of all patients.These 12 patients had received NA treatments except TDF before testing.Among them,6 patients had coexisting rtCYE/rtCYEI and lamivudine-resistance mutations,and 2 patients had coexisting rtCYE/rtCYEI and adefovir-resistance mutations.Compared with the wild-type(WT)strain,the replication capacity of rtCYE/rtCYEI mutants from representative patients decreased by 41.1%-71.8%,and TDF susceptibility reduced by less than 2-fold,but rtCYEI+rtA181V/N236T mutants exhibited a 6.2-/9.9-fold decrease in TDF susceptibility.Molecular modeling showed that rtCYE/rtCYEI mutants had a slight decrease in binding energy to TDF compared to the WT strain.In the clinic,emergence of the rtCYE/rtCYEI mutations was not specifically associated with TDF treatment.CONCLUSION HBV rtCYE/rtCYEI mutations have a limited effect on TDF susceptibility and are not sufficient to cause TDF resistance.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previo...Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3(CRTC3),a member of the CRTC family that regulates cyclic AMP response element-binding protein(CREB)-mediated transcriptional activation.Currently,the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood.Herein,we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication,therefore reducing the production of progeny viruses.The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity.Furthermore,we expanded the suppressive effects of two other CRTC family members(CRTC1 and CRTC2)on the RdRp activities of lethal HCoVs,including SARS-CoV-2 and Middle East respiratory syndrome coronavirus(MERS-CoV),along with the CREB antagonization.Overall,our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB,which not only provides new insights into the replication regulation of HCoVs,but also offers important information for the development of anti-HCoV interventions.展开更多
Hepatitis B virus(HBV)infection results in liver cirrhosis and hepatocellular carcinoma(HCC).HBx/nuclear factor(NF)-κB pathway plays a role in HBV replication.However,whether NF-κB-interacting long noncoding RNA(NKI...Hepatitis B virus(HBV)infection results in liver cirrhosis and hepatocellular carcinoma(HCC).HBx/nuclear factor(NF)-κB pathway plays a role in HBV replication.However,whether NF-κB-interacting long noncoding RNA(NKILA),a suppressor of NF-κB activation,regulates HBV replication remains largely unknown.In this study,gain-and-loss experiments showed that NKILA inhibited HBV replication by inhibiting NF-κB activity.In turn,HBV infection down-regulated NKILA expression.In addition,expression levels of NKILA were lower in the peripheral blood-derived monocytes(PBMCs)of HBV-positive patients than in healthy individuals,which were correlated with HBV viral loads.And a negative correlation between NKILA expression level and HBV viral loads was observed in blood serum from HBV-positive patients.Lower levels of endogenous NKILA were also observed in HepG2 cells expressing a 1.3-fold HBV genome,HBV-infected HepG2-NTCP cells,stable HBV-producing HepG2.2.15 and HepAD38 cells,compared to those HBV-negative cells.Furthermore,HBx was required for NKILA-mediated inhibition on HBV replication.NKILA decreased HBx-induced NF-κB activation by interrupting the interaction between HBx and p65,whereas NKILA mutants lack of essential domains for NF-κB inhibition,lost the ability to inhibit HBV replication.Together,our data demonstrate that NKILA may serve as a suppressor of HBV replication via NF-κB signalling.展开更多
基金Supported by a grant from the Dabur Research Foundation, India and a Senior Research Fellowship of the CSIR, Gov. of India (to MKP)
文摘AIM: To evaluate the in vitro anti-HBV activity of recombinant human IFN-γ, alone and in combination with lamivudine. METHODS: A recombinant baculovirus-HBV/HepG2 culture system was developed which could support productive HBV infection in vitro. Expression of HBsAg and HBeAg in infected HepG2 culture medium was detected by commercial enzyme immunoassays. HBV DNA replication intermediates were detected in infected cells by Southern hybridization and viral DNA load was determined by dot hybridization. RESULTS: IFN-γat 0.1 to 5μg/L efficiently down regulated HBsAg expression in transduced HepG2 cells. At 5μg/L, IFN-γalso suppressed HBV DNA replication in these cells. While treatment with a combination of lamivudine and IFN-γshowed no additive effect, sequential treatment first with lamivudine and then IFN-γwas found to be promising. In this culture system the best HBV suppression was observed with a pulse of 2μmol/L lamivudine for two days, followed by 1μg/L IFN-γfor another four days. Compared to treatment with lamivudine alone, the sequential use of 0.2μmol/L lamivudine for two days, followed by 5μg/L IFN-γfor six days showed a 72% reduction in HBV cccDNA pool. CONCLUSION: This in vitro study warrants further evaluation of a combination of IFN-γand lamivudine, especially in IFN-αnon-responder chronic hepatitis B patients. A reduced duration of lamivudine treatment would also restrict the emergence of drug-resistant HBV mutants.
基金Supported by the Major State Basic Research Development Program (973 Program) of China, No. 2003CB515507
文摘AIM: To develop a conditionally replicative gene-viral vector system called CNHK500-p53, which contains dual promoters within the E1 region, and combines the advantages of oncolytic virus and gene therapies for hepatocellular carcinoma (HCC). METHODS: CNHK500-p53 was constructed by using human telomerase reverse transcriptase (hTERT) promoter to drive adenovirus E1a gene and hypoxia response element (HRE) promoter to drive adenovirus E1b gene. p53 gene expressing cassette was inserted into the genome of replicative virus. Viral replication experiments, cytopathic effect (CPE) and methyl thiazolyl tetrazolium (MTT) assay were performed to test the selective replication and oncolytic efficacy of CNHK500-p53. RESULTS: Immunohistochemistry verified that infection with CNHK500-p53 was associated with selective replication of adenovirus and production of p53 protein in telomerase-positive and hypoxia-inducible factordependent HCC cells, p53 protein secreted from HepG2, infected with CNHK500-p53 was significantly higher than that infected with nonreplicative adenovirus Ad-p53 in vitro (388 ± 34.6 μg/L vs 76.3 ± 13.17 μg/L). Viral replication experiments showed that replication of CNHK500-p53 and CNHK500 or WtAd5, was much stronger than that of Ad-p53 in tested HCC cell lines. CPE and H1-F assay indicated that CNHK500-p53 selectively replicated in and killed HCC cells while leaving normal cells unaffected. CONCLUSION: A more efficient gene-viral system is developed by combining selective oncolysis with exogenous expression of p53 against HCC cells.
文摘OBJECTIVE: To investigate the dynamic alternations of HBV markers of active HBV replicationrecipients receiving lamivudine prophylaxis after liver transplantation.METHODS: Serial liver biopsy samples and sera were obtained from 15 recipients and examined withenzyme-linked radioinmmunoassay for HBsAg, HBeAg, HBsAb, HBcAb and HBeAb, and fluorescentquantitative assay for quantitation of HBV DNA in serum. Immunohistochemical staining of HBsAg,HBcAg and HBV DNA hybridization in situ were used to detect HBV markers in liver biopsy samples.RESULTS: 100 mg lamivudine taken orally every, day for 2 weeks before transplantation enabled 12(80%) of 15 active viral replication recipients (HBV DNA positive) to converse to HBV DNA negative.HBsAb, HBcAb and HBeAb in serum emerged in 1-2 weeks after liver transplantation, and disappearedgradually within 6 months; HBV DNA fluorescent quantitative assay showed constant negativity in serum.Immunohistochemical staining of HBsAg, HBcAg and HBV DNA hybridization in situ in liver biopsysamples showed negative results synchorously. Eight of the 15 HBV active replication recipients lostHBV markers thoroughly both in serology and tissue staining as well as HBV DNA hybridization in situ ofserial liver biopsy samples from 12 to 44 weeks after liver transplantation. Should any of HBsAg, HBeAgin serology and HBsAg, HBcAg in immunohistochemical staining was positive, or HBV DNA detectablein serum, or HBV DNA hybridization in situ in liver tissue positive, allograft HBV reinfection or De novoliver allograft infection could be diagnosed. Furthermore, if associated with elevation of ALT andbilirubin, the diagnosis of HBV hepatitis recurrence could be established.CONCLUSION: Allograft HBV reinfection or De nuvo liver allograft infection in active viral replicationrecipients could be prevented with lamivudine regimen, and further clearance of HBV may be possible ifproper measures are taken.
基金The grants of National Science Found-ation of China(30970162)Program of International Collaboration of Tianjin Municipal Science and Technology Commission(08ZCGHHZ01800)
文摘Perinatal transmission of Human immunodeficiency virus(HIV),also called mother-to-child transmission(MTCT),accounts for 90% of infections in infants worldwide and occurs in 30%-45% of children born to untreated HIV-1 infected mothers.Among HIV-1 infected mothers,some viruses are transmitted from mothers to their infants while others are not.The relationship between virologic properties and the pathogenesis caused by HIV-1 remains unclear.Previous studies have demonstrated that one obvious source of selective pressure in the perinatal transmission of HIV-1 is maternal neutralizing antibodies.Recent studies have shown that viruses which are successfully transmitted to the child have growth advantages over those not transmitted,when those two viruses are grown together.Furthermore,the higher fitness is determined by the gp120 protein of the virus envelope.This suggests that the selective transmission of viruses with higher fitness occurred exclusively,regardless of transmission routes.There are many factors contributing to the selective transmission and HIV replicative fitness is an important one that should not be neglected.This review summarizes current knowledge of the role of HIV replicative fitness in HIV MTCT transmission and the determinants of viral fitness upon MTCT.
基金This work was supported by following grants:Grant from the Director’s Fund of the Institute of Cytology,Russian Academy of SciencesState Assignment No.АААА-А19-119020190093Grant-Subsidy No.075-15-2021-1063(15BRC.21.0011).
文摘All non-immortalized mesenchymal stem cells have a limited proliferative potential,that is,replicative senescence(RS)is an integral characteristic of the life of all mesenchymal stem cells(MSCs).It is known that one of the important signs of RS is a decrease of cell motility,and that violations of migration processes contribute to the deterioration of tissue regeneration.Therefore,the characterization of the properties of the cell line associated with RS is a prerequisite for the effective use of MSCs in restorative medicine.One of the key proteins regulating cell motility is the small GTPase RhoA.The main purpose of this work was to study the nuclear-cytoplasmic redistribution of the RhoA protein during RS in MSC lines recently obtained and characterized in our laboratory.The study found that a comparative analysis of the intracellular localization of RhoA in three cell lines(MSCWJ-1,FetMSC,DF2)showed a decrease in the nuclear localization of RhoA during RS.
文摘In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.
基金This work was supported by the grants from the National Natural Science Foundation of China(No.30672469)the Beijing Natural Science Foundation(No.7062030)
文摘Background The accumulation of free radicals and advanced glycation end products (AGEs) in cell plays a very important role in replicative senescence. Aminoguanidine (AG) has potential antioxidant effects and decreases AGE levels. This study aimed to investigate its effect on replicative senescence in vitro. Methods The effects of aminoguanidine on morphology, replicative lifespan, cell growth and proliferation, AGEs, DNA damage, DNA repair ability and telomere length were observed in human fetal lung diploid fibroblasts (2BS). Results Aminoguanidine maintained the non-senescent phenotype of 2BS cells even at late population doubling (PD) and increased cumulative population doublings by at least 17-21 PDs. Aminoguanidine also improved the potentials of growth and proliferation of 2BS cells as detected by the MTT assay. The AGE levels of late PD cells grown from early PD in DMEM containing aminiguanidine decreased significantly compared with those of late PD control cells and were similar to those of young control cells. In addition, the cells pretreated with aminoguanidine had a significant reduction in DNA strand breaks when they were exposed to 200 μmol/L H2O2 for 5 minutes which indicated that the compound had a strong potential to protect genomic DNA against oxidative stress. And most of the cells exposed to 100 μmol/L H2O2 had much shorter comet tails and smaller tail areas after incubation with aminoguanidine-supplemented DMEM, which indicated that the compound strongly improved the DNA repair abilities of 2BS cells. Moreover, PD55 cells grown from PD28 in 2 mmol/L or 4 mmol/L aminoguanidine retain telomere lengths of 7.94 kb or 8.12 kb, which was 0.83 kb or 1.11 kb longer than that of the control cells. Conclusion Aminoguanidine delays replicative senescence of 2BS cells and the senescence-delaying effect of aminoguanidine appear to be due to its many biological properties including its potential for proliferation improvement, its inhibitory effect of AGE formation, antioxidant effect, improvement of DNA repair ability and the slowdown of telomere shortening.
基金supported by the Fundamental Research Funds for the Central Universities(WK2150110022)Anhui Provincial Natural Science Foundation(2208085QF189)National Natural Science Foundation of China(62202440).
文摘An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential,as the loss of cached data requires access to data from external storage,which evidently increases the response latency.Typically,replication and erasure code(EC)are two fault-tolerant schemes that pose different trade-offs between access performance and storage usage.To help make the best performance and space trade-off,we design ElasticMem,a hybrid fault-tolerant distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant scheme.ElasticMem exploits a novel EC-oriented replication(EOR)that carefully designs the data placement of replication according to the future data layout of EC to enhance the I/O efficiency of redundancy transition.ElasticMem solves the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data bypassing.It detects correlated read and write requests and serves subsequent read requests with local data.We implement a prototype that realizes ElasticMem based on Memcached.Experiments show that ElasticMem remarkably reduces the time of redundancy transition,the overall latency of correlated concurrent data accesses,and the latency of single data access among them.
基金supported by grants from the National Natural Science Foundation of China(32170238,32400191)Guangdong Basic and Applied Basic Research Foundation(2023A1515111029)+2 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(RCYX20200714114538196)the Chinese Academy of Agricultural Sciences Elite Youth Program(grant 110243160001007)the Guangdong Pearl River Talent Program(2021QN02N792)。
文摘Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(SSB1 and SSB2).However,the functional divergence of these two SSB copies in plants remains largely unknown,and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete.In this study,phylogenetic,gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants.Based on accurate long-read sequencing results,ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA(mtDNA)and plastid DNA(ptDNA),accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes.Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.
文摘Ultraviolet nanoimprint lithography(UV-NIL)is a versatile and cost-effective technique for the fabrication of micro-and nanostructures by copying master patterns in a planar or a roll-to-roll process through curing of a liquid UV-sensitive precursor.For applications with a high pattern complexity,new UV-NIL process chains must be specified.Master fabrication is a challenging part of the development and often cannot be accomplished using a single master fabrication technique.Therefore,an approach combining different patterning fabrication techniques is developed here for polymer masters using laser direct writing and photolithography.The polymer masters produced in this way are molded into inverse silicone stamps that are used for roll-to-roll replication into an acrylate formulation.To fit the required roller size for large-area UV-NIL,several submasters with micrometer-sized dot and line gratings and prism arrays,which have been patterned by these different techniques,are assembled to final size of ~200×600 mm^(2) with an absolute precision of better than 50μm.The size of the submasters allows the use of standard laboratory equipment for patterning and direct writing,thus enabling the fabrication of micro-and even nanostructures when electron-beam writing is utilized.In this way,the effort,time,and costs for the fabrication of masters for UV-NIL processes are reduced,enabling further development for particular structures and applications.Using this approach,patterns fabricated with different laboratory tools are finally replicated by UV-NIL in an acrylate formulation,demonstrating the high quality of the whole process chain.
基金supported by the National Natural Science Foundation of China(grant no.82370015).
文摘The 3CL protease, a highly conserved enzyme in the coronavirus, plays a crucial role in the viral life cycle by facilitating viral replication through precise cleavage of polyproteins. Beyond its proteolytic function, the 3CL protease also engages in intricate interactions with host cell proteins involved in critical cellular processes such as transcription, translation, and nuclear-cytoplasmic transport, effectively hijacking cellular machinery to promote viral replication. Additionally, it disrupts innate immune signaling pathways, suppresses interferon activity and cleaves antiviral proteins. Furthermore, it modulates host cell death pathways including pyroptosis and apoptosis, interferes with autophagy and inhibits stress granule formation to maintain viral infection and exacerbate viral pathogenesis. This review highlights the molecular mechanisms by which the 3CL protease orchestrates virus-host interactions, emphasizing its central role in coronavirus pathogenesis and highlighting potential therapeutic targets for future interventions.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.2019R1A2C1002221 and RS-2023-00252186)Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(Nos.2021-0-00590,RS-2021-II210590Decentralized High Performance Consensus for Large-Scale Blockchains).
文摘Personal video recorders (PVRs) have altered the way users consume television (TV) content by allowing users to record programs and watch them at their convenience, overcoming the constraints of live broadcasting. However, standalone PVRs are limited by their individual storage capacities, restricting the number of programs they can store. While online catch-up TV services such as Hulu and Netflix mitigate this limitation by offering on-demand access to broadcast programs shortly after their initial broadcast, they require substantial storage and network resources, leading to significant infrastructural costs for service providers. To address these challenges, we propose a collaborative TV content recording system that leverages distributed PVRs, combining their storage into a virtual shared pool without additional costs. Our system aims to support all concurrent playback requests without service interruption while ensuring program availability comparable to that of local devices. The main contributions of our proposed system are fourfold. First, by sharing storage and upload bandwidth among PVRs, our system significantly expands the overall recording capacity and enables simultaneous recording of multiple programs without the physical constraints of standalone devices. Second, by utilizing erasure coding efficiently, our system reduces the storage space required for each program, allowing more programs to be recorded compared to traditional replication. Third, we propose an adaptive redundancy scheme to control the degree of redundancy of each program based on its evolving playback demand, ensuring high-quality playback by providing sufficient bandwidth for popular programs. Finally, we introduce a contribution-based incentive policy that encourages PVRs to actively participate by contributing resources, while discouraging excessive consumption of the combined storage pool. Through extensive experiments, we demonstrate the effectiveness of our proposed collaborative TV program recording system in terms of storage efficiency and performance.
基金supported by the French Agence Nationale de la Recherche(19-CE31-0002 AstroMeso)the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program(Advanced Grant AstroGeo-885250).
文摘When interpreting results,it is imperative to have some understanding of the degree to which the results are replicable.If the results cannot be replicated with independent data,then interpretations from the results become questionable.To minimize the potential for misinterpretations,the current study analyzes six time-series derived from globally sampled U-Pb zircon databases–of which,two are independent igneous databases,one being a quasi-independent igneous database,and three being independent detrital databases.These time-series are then analyzed with standard statistical methods to evaluate replicability.The methods include bandpass filtering to transform the raw time-series into stationary sequences,Student’s t-test,Monte Carlo simulations,periodograms from spectral analysis,correlation studies,and correlograms.Each test is designed to determine the replicability of a specific time-series,as well as the replicability of periodicities found from the time-series.The results show at least three key components to assessing replicability:(a)U-Pb igneous and detrital zircon age distributions are highly replicable,(b)time-series replicability gradually deteriorates with age,and(c)replicability is scale dependent,with low frequency cycles being more replicable than high frequency cycles.From the tests,we conclude that four harmonic cycles are highly replicable and statistically significant,these being periodicities of 810,270,90,and 67.5-myr.
基金financially supported by the National Natural Science Foundation of China(82173769)Tianjin Science Foundation for Distinguished Young Scholars(24JCJQJC00050)+2 种基金Applied Basic Research Multi-Investment Foundation of Tianjin(21JCYBJC01540)the National Natural Science Foundation of China(82300336)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2019KJ178).
文摘Mitochondria provides adenosine triphosphate for multiple vital movements to ensure tumor cell proliferation.Compared to the broadly used method of inducing DNA replication arrest to kill cancer,inducing mitochondria damage to cause energy shortage is quite promising as it can inhibit tumor cell bioactivities,increase intracellular accumulation of toxic drugs,eventually sensitize chemotherapy and even reverse drug resistance.Breaking the balance of glutathione(GSH)and reactive oxygen species(ROS)contents have been proven efficient in destroying mitochondria respectively.Herein,apigenin,a GSH efflux reagent,and 2-deoxy-5-fluorouridine 5-monophosphate sodium salt(FdUMP)that could induce toxic ROS were co-delivered by constructed lipid nanoparticles,noted as Lip@AF.An immune-checkpoint inhibition reagent CD276 antibody was modified onto the surface of Lip@AF with high reaction specificity(noted asαCD276-Lip@AF)to enhance the recognition of immune cells to tumor.Results showed that the redox balancewas destroyed,leading to severe injury to mitochondria and cell membrane.Furthermore,synergistic DNA/RNA replication inhibition caused by inhibiting the function of thymidylate synthase were observed.Eventually,significantly enhanced cytotoxicity was achieved by combining multiple mechanisms including ferroptosis,apoptosis and pyroptosis.In vivo,strengthen tumor growth inhibitionwas achieved byαCD276-Lip@AF with high biosafety,providing new sights in enhancing chemotherapy sensitiveness and achieving high-performance chemo-immunotherapy.
基金supported by Open Research Projects of Zhejiang Lab(No.2022QA0AB02)Natural Science Foundation of Sichuan Province(2022NSFSC0913)Sichuan Province Selected Funding for Postdoctoral Research Projects(TB2022032).
文摘Vertical Federated Learning(VFL),which draws attention because of its ability to evaluate individuals based on features spread across multiple institutions,encounters numerous privacy and security threats.Existing solutions often suffer from centralized architectures,and exorbitant costs.To mitigate these issues,in this paper,we propose SecureVFL,a decentralized multi-party VFL scheme designed to enhance efficiency and trustworthiness while guaranteeing privacy.SecureVFL uses a permissioned blockchain and introduces a novel consensus algorithm,Proof of Feature Sharing(PoFS),to facilitate decentralized,trustworthy,and high-throughput federated training.SecureVFL introduces a verifiable and lightweight three-party Replicated Secret Sharing(RSS)protocol for feature intersection summation among overlapping users.Furthermore,we propose a(_(2)^(4))-sharing protocol to achieve federated training in a four-party VFL setting.This protocol involves only addition operations and exhibits robustness.SecureVFL not only enables anonymous interactions among participants but also safeguards their real identities,and provides mechanisms to unmask these identities when malicious activities are performed.We illustrate the proposed mechanism through a case study on VFL across four banks.Finally,our theoretical analysis proves the security of SecureVFL.Experiments demonstrated that SecureVFL outperformed existing multi-party VFL privacy-preserving schemes,such as MP-FedXGB,in terms of both overhead and model performance.
基金supported by the Applied Basic Research Programs of Science and Technology Commission Foundation of Yunnan Province(202401AT070186 to K.Q.L.,202201AS070044 to B.Z.)Yunnan Province(202305AH340006 to B.Z.)Kunming Science and Technology Bureau(2022SCP007 to B.Z.)。
文摘The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain genomic stability remain unclear.Also,recent studies have uncovered noncanonical roles of ribosome-associated factors in maintaining genomic stability.In this study,somatic skin fibroblasts from the long-lived big-footed bat(Myotis pilosus)were examined,with results showing that bat cells exhibited enhanced RS tolerance compared to mouse cells.Comparative transcriptome analysis under RS conditions revealed pronounced species-specific transcriptional differences,including robust up-regulation of ribosome biogenesis genes in bat cells and a markedly reduced activation of the P53 signaling pathway.These features emphasize a distinct homeostatic strategy in bat cells.Nuclear fragile X mental retardation-interacting protein 1(Nufip1),a ribosome-associated factor highly expressed in bat fibroblasts,was identified as a potential integrator of ribosomal and P53 signaling via its association with ribosomal protein S27-like(Rps27l).These findings provide direct cellular and molecular evidence for a noncanonical RS response in bats,highlighting a deeper understanding of the biological characteristics and genomic maintenance mechanisms of long-lived species.
基金Supported by The National Natural Science Foundation of China,No.82470632.
文摘BACKGROUND Whether rtS106C+H126Y+D134E/rtS106C+H126Y+D134E+L269I(rtCYE/rtCYEI)mutations in the hepatitis B virus(HBV)reverse-transcriptase(RT)region are associated with tenofovir disoproxil fumarate(TDF)resistance is controversial.AIM To evaluate the presence of the rtCYE/rtCYEI mutations in a large cohort of Chinese patients with chronic HBV infection.METHODS A total of 28236 patients who underwent drug resistance testing at the Fifth Medical Center of Chinese PLA General Hospital from 2007 to 2019 were enrolled.All patients received nucleoside/nucleotide analogues(NAs)therapy,and serum samples were collected for sequence analysis of the HBV RT domain with mutation analysis.RESULTS The detection rates of a single mutation of rtS106C,rtH126Y,rtD134E,and rtL269I were 8.21%,3.20%,2.55%and 61.49%in 23718 genotype C patients,and 1.31%,1.76%,0.21%,and 92.33%in 4266 genotype B patients,respectively.The combined mutations of rtCYE/rtCYEI were only detected in 12 genotype C patients,accounting for 0.042%of all patients.These 12 patients had received NA treatments except TDF before testing.Among them,6 patients had coexisting rtCYE/rtCYEI and lamivudine-resistance mutations,and 2 patients had coexisting rtCYE/rtCYEI and adefovir-resistance mutations.Compared with the wild-type(WT)strain,the replication capacity of rtCYE/rtCYEI mutants from representative patients decreased by 41.1%-71.8%,and TDF susceptibility reduced by less than 2-fold,but rtCYEI+rtA181V/N236T mutants exhibited a 6.2-/9.9-fold decrease in TDF susceptibility.Molecular modeling showed that rtCYE/rtCYEI mutants had a slight decrease in binding energy to TDF compared to the WT strain.In the clinic,emergence of the rtCYE/rtCYEI mutations was not specifically associated with TDF treatment.CONCLUSION HBV rtCYE/rtCYEI mutations have a limited effect on TDF susceptibility and are not sufficient to cause TDF resistance.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金supported by grants from the National Natural Science Foundation of China(32071236)the National Science Fund for Distinguished Young Scholars(32225001)+6 种基金the 1.3.5 Project for Disciplines Excellence of West China Hospital,Sichuan University(ZYGD23018)Key Science and Technology Research Projects in Key Areas of the Corps(2023AB053)the National Key Research and Development Program of China(2022YFC2303700)the Joint Project of Pengzhou People's Hospital with Southwest Medical University(2024PZXNYD02)Project funded by China Postdoctoral Science Foundation(2020M683304)Sichuan Science and Technology Support Project(2021YJ0502)Post-Doctor Research Project,West China Hospital,Sichuan University(2020HXBH082).
文摘Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3(CRTC3),a member of the CRTC family that regulates cyclic AMP response element-binding protein(CREB)-mediated transcriptional activation.Currently,the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood.Herein,we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication,therefore reducing the production of progeny viruses.The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity.Furthermore,we expanded the suppressive effects of two other CRTC family members(CRTC1 and CRTC2)on the RdRp activities of lethal HCoVs,including SARS-CoV-2 and Middle East respiratory syndrome coronavirus(MERS-CoV),along with the CREB antagonization.Overall,our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB,which not only provides new insights into the replication regulation of HCoVs,but also offers important information for the development of anti-HCoV interventions.
基金supported in part by funding from the National Key R&D Program of China(2021YFC2301900,2021YFC2301903,and 2021YFC2301904)National Natural Science Foundation of China(81672004 and 81930062 to WZ+3 种基金81801993 to HW)Science and Technology Department of Jilin Province(20190101003JH,20190201272JC,20200201331JC,and 20200201422JC)the Key Laboratory of Molecular Virology,Jilin Province(20102209)supported by Fundamental Research Funds for Central Universities.
文摘Hepatitis B virus(HBV)infection results in liver cirrhosis and hepatocellular carcinoma(HCC).HBx/nuclear factor(NF)-κB pathway plays a role in HBV replication.However,whether NF-κB-interacting long noncoding RNA(NKILA),a suppressor of NF-κB activation,regulates HBV replication remains largely unknown.In this study,gain-and-loss experiments showed that NKILA inhibited HBV replication by inhibiting NF-κB activity.In turn,HBV infection down-regulated NKILA expression.In addition,expression levels of NKILA were lower in the peripheral blood-derived monocytes(PBMCs)of HBV-positive patients than in healthy individuals,which were correlated with HBV viral loads.And a negative correlation between NKILA expression level and HBV viral loads was observed in blood serum from HBV-positive patients.Lower levels of endogenous NKILA were also observed in HepG2 cells expressing a 1.3-fold HBV genome,HBV-infected HepG2-NTCP cells,stable HBV-producing HepG2.2.15 and HepAD38 cells,compared to those HBV-negative cells.Furthermore,HBx was required for NKILA-mediated inhibition on HBV replication.NKILA decreased HBx-induced NF-κB activation by interrupting the interaction between HBx and p65,whereas NKILA mutants lack of essential domains for NF-κB inhibition,lost the ability to inhibit HBV replication.Together,our data demonstrate that NKILA may serve as a suppressor of HBV replication via NF-κB signalling.