期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
WTSTC:基于广域时频采样和时序感知卷积的语音识别模型
1
作者 刘立波 王詠森 +1 位作者 刘倩 邓箴 《中文信息学报》 北大核心 2025年第4期161-171,共11页
针对现有语音识别模型存在的时频特征感受野不足、时序特征损失及模型结构扩展性较差等方面的问题,该文提出基于广域时频采样和时序感知卷积的语音识别模型WTSTC,在保证模型轻量化的同时提升识别精度。首先,通过结合RepLKNet模块和传统... 针对现有语音识别模型存在的时频特征感受野不足、时序特征损失及模型结构扩展性较差等方面的问题,该文提出基于广域时频采样和时序感知卷积的语音识别模型WTSTC,在保证模型轻量化的同时提升识别精度。首先,通过结合RepLKNet模块和传统卷积下采样模块,构建了一种新型的广域时频采样模块,增大感受野的同时更加关注输入音频序列的时频特征;其次,设计了时序感知卷积模块,通过实现应用于时序特征的一维全局响应归一化层取代原有的Batch Norm以增强通道间的特征竞争,避免了归一化过程中语音信号的时序特征信息丢失的潜在可能;最后,在模型内部各模块间引入Droppath正则化方法,通过在模块间随机跳跃样本避免模型对特定模块的依赖。实验结果表明,该方法在中文公共数据集AISHELL-1的测试集上字错率为4.27%,在更大规模英文公共数据集Librispeech的测试集clean和other上的词错率分别为2.2%和5.1%。在保持相同训练策略的前提下,该方法相较现有先进模型展现出更优异的性能。 展开更多
关键词 自动语音识别 端到端 CONFORMER replknet
在线阅读 下载PDF
An Efficient Improved Yolov5-Based Method for Detecting Iron Waste in Ores
2
作者 Kaiyu Yan Juan Wang +3 位作者 Jia Wang Dawei Tian Shu Peng Yunhua Xu 《Instrumentation》 2025年第2期36-46,共11页
Detection of ore waste is crucial for achieving automation in mineral metallurgy production.However,deep learning-based target detection algorithms still face several challenges in iron waste screening,including poor ... Detection of ore waste is crucial for achieving automation in mineral metallurgy production.However,deep learning-based target detection algorithms still face several challenges in iron waste screening,including poor lighting conditions in underground mining environments,dust disturbances,platform vibrations during operation,and limited resources for large-scale computing equipment.These factors contribute to extended computation times and unsatisfactory detection accuracy.To address these challenges,this paper proposes an ore waste detection algorithm based on an improved version of YOLOv5.To enhance feature extraction capabilities,the RepLKNet module is incorporated into the YOLOv5 backbone and neck networks.This module enhances the deformation information of feature extraction with the maximum effective Receptive Field to increase the model's accuracy.The Normalizationbased Attention Module(NAM)was introduced to enhance the attention mechanism by focusing on the most relevant features.This improves accuracy in detecting objects against noisy or unclear backgrounds,thereby further enhancing detection performance while reducing model parameters.Additionally,the loss function is optimized to constrain angular deviation using the SIOU loss function,which prevents the training frame from drifting during training and enhances convergence speed.To validate the performance of the proposed method,we tested it using a self-constructed dataset comprising 1,328 images obtained from the crushing station at Jinchuan Group's No.2 mine.The results indicate that,compared to YOLOv5s on the self-constructed dataset,the proposed algorithm achieves an 18.3%improvement in mAP(0.5),a 54%reduction in FLOPs,and a 52.53%decrease in model parameters.The effectiveness and superiority of the proposed algorithm are demonstrated through case studies and comparative analyses. 展开更多
关键词 YOLOv5 ore waste detection replknet NAM SIOU
原文传递
基于改进YOLOv5的安全帽检测算法研究 被引量:3
3
作者 胡晓栋 王国明 《计算机时代》 2023年第6期76-81,共6页
针对现有的安全帽检测算法参数量大,不利于嵌入式端部署,且密集目标存在漏检等情况,本文做出以下改进:对模型的主干特征网络用更加轻量的MobileViTv2网络进行替换并引入轻量级的无参卷积注意力模块(SimAM),再结合大卷积核RepLKNet架构... 针对现有的安全帽检测算法参数量大,不利于嵌入式端部署,且密集目标存在漏检等情况,本文做出以下改进:对模型的主干特征网络用更加轻量的MobileViTv2网络进行替换并引入轻量级的无参卷积注意力模块(SimAM),再结合大卷积核RepLKNet架构对原有的超深小卷积核进行改进,在减少参数量的同时提升了精度。实验结果表明,改进后的算法平均精度达到96%,提升了1.8%,模型大小降低了31%。同时能满足实际场景对安全帽检测精度和速度的要求。 展开更多
关键词 深度学习 YOLOv5 MobileViTv2 SimAM replknet 安全帽
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部