Urban large-scale topographical maps can be renewed by means of overlapping the original digital line graph (DLG) and up-to-date remote sensitive images which have high precision and have been orthographically rectifi...Urban large-scale topographical maps can be renewed by means of overlapping the original digital line graph (DLG) and up-to-date remote sensitive images which have high precision and have been orthographically rectified precisely. Quick Bird panchromatic remote sensing image is used and an urban area with even terrain and dense buildings is selected as experimental area. Ground control points (GCPs) are selected on a new 1∶500 topographical map and multinomial model is applied for rectification. After rectification the absolute positional error of a single point of the image is less than 1m, therefore this method is suitable for renewing topographical maps of up to (1∶2 000) scale.展开更多
Renewing warranty can provide customers with better service,and thus help manufacturers to gain market opportunities.In engineering practice,the cost for replacement is usually higher than the cost for maintenance,hen...Renewing warranty can provide customers with better service,and thus help manufacturers to gain market opportunities.In engineering practice,the cost for replacement is usually higher than the cost for maintenance,hence manufacturers often face huge challenge to reduce the warranty service cost.With consideration of the warranty deadline,we propose a two-stage optimization model for renewing warranty.In the first stage,a renewing warranty with deadline(RWD)policy is implemented,where the deadline represents the cumulative uptime threshold.When the cumulative uptime exceeds the deadline,the product will be minimally repaired and kept to the residual warranty period.When RWD is expired,the replacement warranty with limited repairs(RWLR)policy is applied.Under the free replacement and pro-rata warranty policy,the corresponding two-stage cost optimization model is established from the manufacturer’s perspective,the aim is to minimize the cost rate and obtain the optimal warranty period.A numerical example is provided to illustrate the validity of the proposed model,and the sensitivity analysis is also carried out.展开更多
In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufactu...In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufacturers(customers) may have to decide whether or not to provide(buy) the warranty considering upgrading maintenance.This paper presents a mathematical model considering upgrading maintenance for products with multiple failure modes.Upgrading maintenance is taken into account with the assumption that the warranted item is upgraded one time during the warranty cycle.The upgrading maintenance is carried out,when the corrective maintenance is taken place.After upgrading maintenance,the high-quality spares are used to replace the failed item.In the numerical example,the results of the models are calculated.Monte Carlo simulation results are compared with the analytical results to demonstrate the correctness and efficiency of the proposed models considering upgrading maintenance.展开更多
To create a scientific way to renew the grades of cultivated land at county level, monitoring points were set up according to the monitoring control regions and grade types of cultivated land in Daxing District, Beiji...To create a scientific way to renew the grades of cultivated land at county level, monitoring points were set up according to the monitoring control regions and grade types of cultivated land in Daxing District, Beijing, and soil samples were collected to carry out chemical analysis. Afterwards, the input and output data of cultivated land in each village were surveyed to renew the grades of cultivated land. The results indicate that the average natural grade of cultivated land was 8.4, which was equal to that of 2004; the average utilization grade was 8.1, which was slightly higher than that of 2004; the average economic grade was 9.9, which was lower than that of 2004. It is concluded that it is scientific to renew cultivated land grades through scientifically setting monitoring points according to the monitoring control regions and grade types of cultivated land.展开更多
Distinguished Vice-Minister Li Jinjun,Ladies and gentlemen,friends,It is a delightful event for all of us to renew the MOU between FES and CAFIU for the nineth time.Years of cooperation and fruitful results are worth ...Distinguished Vice-Minister Li Jinjun,Ladies and gentlemen,friends,It is a delightful event for all of us to renew the MOU between FES and CAFIU for the nineth time.Years of cooperation and fruitful results are worth celebrating.For a long period of time,the two organizations have been making efforts to put the thoughts of Deng Xiaopeng and Willy Brandt into practice,namely,the thoughts of having dialogue and enhancing mutual understanding while展开更多
Respected President Beck,Respected vips,Ladies,gentlemen,friends,I am delighted to sign the Memorandum of Understanding on Cooperation between CAFIU and FES with President Beck here today.This is an important moment...Respected President Beck,Respected vips,Ladies,gentlemen,friends,I am delighted to sign the Memorandum of Understanding on Cooperation between CAFIU and FES with President Beck here today.This is an important moment in the history of the relations between CAFIU and FES,which signifies that the sound cooperation between both sides will展开更多
美国作曲家玛丽莲·丝露德(Marilyn Shrude)是著名的钢琴家和作曲家,她所作的《重新开始的神话》(Renewing the Myth)是当代萨克斯管经典音乐作品之一,也是萨克斯管最著名的比赛——第三届阿道夫萨克斯管比赛的必奏曲目.我们通过对...美国作曲家玛丽莲·丝露德(Marilyn Shrude)是著名的钢琴家和作曲家,她所作的《重新开始的神话》(Renewing the Myth)是当代萨克斯管经典音乐作品之一,也是萨克斯管最著名的比赛——第三届阿道夫萨克斯管比赛的必奏曲目.我们通过对这首作品的分析可以了解萨克斯管当代音乐的曲式和技巧.展开更多
The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3...The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells. The stem cells give rise to three main progenitors: prepit, preneck and preparietal cells. Parietal cells develop either directly from the noncycling preparietal cells or less commonly via differentiation of the cycling prepit and preneck cell progenitors. The formation of a parietal cell is a sequential process which involves diminishment of glycocalyx, production of cytoplasmic tubulovesicles, an increase in number and length of microvilli, an increase in number and size of mitochondria, and fi nally, expansion and invagination of the apical membrane with the formation of an intracellular canalicular system. Little is known about the genetic counterparts of these morphological events. However, the time dimension of parietal cell production and the consequences of its alteration on the biological features of the gastric gland are well documented. The production of a new parietal cell takes about 2 d. However, mature parietal cells have a long lifespan during which they migrate bidirectionally while their functional activity for acid secretion gradually diminishes. Following an average lifespan of about 54 d, in mice, old parietal cells undergo degeneration and elimination. Various approaches for genetic alteration of the development of parietal cells have provided evidence in support of their role as governors of the stem/progenitor cell proliferation and differentiation programs. Revealing the dynamic features and the various roles of parietal cells would help in a better understanding of the biological features of the gastric glands and would hopefully help in providing a basis for the development of new strategies for prevention, early detection and/or therapy of various gastric disorders in which parietal cells are involved, such as atrophic gastritis, peptic ulcer disease and gastric cancer.展开更多
Improving the quality of life for Earth's growing population is a complex task that requires the development of new technologies and materials. Perhaps the biggest challenge is access to clean and renewable energy...Improving the quality of life for Earth's growing population is a complex task that requires the development of new technologies and materials. Perhaps the biggest challenge is access to clean and renewable energy sources that can drive a sustainable future. Photovoltaics, today mainly represented by silicon-based solar cells, convert solar energy into electricity and is already an important component in the renewable energy portfolio.展开更多
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta...Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.展开更多
Solar energy, as a renewable resource, is an effective solution to the current global energy shortage problem. To actively respond to the call for "carbon peak" and "carbon neutrality", solar cell ...Solar energy, as a renewable resource, is an effective solution to the current global energy shortage problem. To actively respond to the call for "carbon peak" and "carbon neutrality", solar cell industry has experienced unprecedented development. The full utilization of solar energy resources remains an urgent issue to be addressed.展开更多
Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intellig...Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.展开更多
In 2024,China’s export volume reached RMB 25.45 trillion,a year-on-year increase of 7.1%,a new historical high.This marked a new level of competitiveness for Chinese enterprises in the global market.From the traded p...In 2024,China’s export volume reached RMB 25.45 trillion,a year-on-year increase of 7.1%,a new historical high.This marked a new level of competitiveness for Chinese enterprises in the global market.From the traded product going overseas to today’s brand and industrial chain going overseas,Chinese enterprises have entered a new stage of development when it comes to global expansion,especially in manufacturing fields such as renewable energy,electric vehicles,electronic products,home appliances,and machinery.展开更多
Electrochemical CO_(2) reduction reaction(CO_(2)RR),driven by renewable energy,offers a promising solution to mitigate increasing CO_(2) emissions and establish a carbon-neutral cycle.Copper is a highly selective and ...Electrochemical CO_(2) reduction reaction(CO_(2)RR),driven by renewable energy,offers a promising solution to mitigate increasing CO_(2) emissions and establish a carbon-neutral cycle.Copper is a highly selective and active catalyst for CO_(2)RR but suffers from structural reconstruction challenges.Hybrid organic/inorganic materials address these issues by offering customizable compositions and interfaces.Recently,Buonsanti’s team developed hybrid Cu@AlOx nanocrystals with tunable alumina shells via a colloidal atomic layer deposition approach,achieving stable and selective methane production during CO_(2)RR.Mechanistic studies reveal that the alumina shell stabilizes oxidized copper species through Cu^(2+)-O-Al motifs coordinated with AlO_(4) Lewis acid sites,reducing copper dissolution and structural reconstruction.This study provides key insights into the mechanism underlying stabilization,highlighting the critical role of Lewis acidity in preserving the structural integrity of the catalyst.This highlight review aims to inspire the development of other high-performance and stable catalysts through colloidal atomic layer deposition strategies.展开更多
Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following thi...Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following this worldwide trend,Brunei’s government has initiated several strategic programs aimed at encouraging the establishment of energy from renewable sources in the nation’s energy mix.These initiatives are designed not only to support environmental sustainability but also to make energy from renewable sources increasingly competitive in comparison to more conventional energy sources like gas and oil,which have historically dominated Brunei’s energy market.The optimization of a hybrid energy system that combines diesel generators,solar photovoltaic(PV)panels,and the national power grid is the focus of this study.The objective is to identify the most cost-effective and environmentally sustainable configuration that can reliably meet local energy demands.During optimization,several configuration was tried and tested,including only grid,PV and Grid and PV-generator.HOMER(Hybrid Optimization of Multiple Energy Resources)software,a popular simulation tool that makes it possible to simulate and analyze hybrid energy systems,is utilized in the optimization process.Inside the HOMER Pro optimization,various system configuration is taken into account for the optimization.While simulating,it takes into account different combinations of components such as solar panels,wind turbines and batteries.Later on,it is being ranked by different factors such as net present cost(NPC),Cost of Energy(COE),etc.A comprehensive techno-economic research is carried out to evaluate various system configurations,considering key performance indicators such as total energy generation cost,operational expenditure,and greenhouse gas emissions.The results provide valuable insights into how renewable-based hybrid systems can reduce environmental impact while maintaining economic viability,supporting Brunei’s broader goals of energy diversification and sustainability.The study also emphasizes how such hybrid systems could be scaled for off-grid and rural populations in Brunei,where a dependable electricity supply is still a problem.Furthermore,sensitivity analyses were performed to evaluate the effects of variations in solar irradiation,load demand,and fuel prices on the overall system performance.Policymakers and energy planners can use these insights to help them make data-driven decisions about future investments in infrastructure for renewable energy.展开更多
Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex syst...Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems.展开更多
Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible...Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%.展开更多
Photo-assisted energy harvesting plays a crucial role in present research and future scenario in the field of technology advancements towards efficient energy utilization.Modern world sees an opportunity in developing...Photo-assisted energy harvesting plays a crucial role in present research and future scenario in the field of technology advancements towards efficient energy utilization.Modern world sees an opportunity in developing such technologies which are self-powered,self-driven and self-healing that can be utilized in the fields including portable,wearable electronics,internet of things(IOT)devices,electric vehicles,space applications,renewable energy systems,and smart grid applications.The present review gives an insight to the aspects in the present and future developmental goals in the field of light driven supercapacitors(LDS).Such systems comprise of active components viz.layer material selection in the solar cell and supercapacitors.A comprehensive study to achieve high absorption,power/energy density and efficient storage of absorbed energy has been discussed.The major factors for device design and mechanism adopted for efficient photo conversion and their subsequent storage as LDS depends on efficient light intensity source,surface area,optimization of the structure of electrodes,electrode selection,charge separation efficiency etc.A comprehensive analysis of the previously developed LDS with their optimized parameters has been presented.Various challenges viz.material selection,compatibility of layers,lower photovoltaic conversion and increased resistivity on integrating the energy conversion and storage module has also been discussed.In order to achieve high-performance LDS and to enhance their practicality various steps are suggested for the future development of LDS at industry and commercial scale.展开更多
With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of r...With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of resource sharing.Microgrid can realize the flexibility of distributed power supply and the application of high efficiency,solving the problem of a large number and variety of forms of the power grid.Based on this,this paper will discuss the operation control strategy of microgrid based on a new energy grid connection,and provide constructive ideas for high-quality operation of microgrid.展开更多
文摘Urban large-scale topographical maps can be renewed by means of overlapping the original digital line graph (DLG) and up-to-date remote sensitive images which have high precision and have been orthographically rectified precisely. Quick Bird panchromatic remote sensing image is used and an urban area with even terrain and dense buildings is selected as experimental area. Ground control points (GCPs) are selected on a new 1∶500 topographical map and multinomial model is applied for rectification. After rectification the absolute positional error of a single point of the image is less than 1m, therefore this method is suitable for renewing topographical maps of up to (1∶2 000) scale.
基金Project(71671035) supported by the National Natural Science Foundation of China
文摘Renewing warranty can provide customers with better service,and thus help manufacturers to gain market opportunities.In engineering practice,the cost for replacement is usually higher than the cost for maintenance,hence manufacturers often face huge challenge to reduce the warranty service cost.With consideration of the warranty deadline,we propose a two-stage optimization model for renewing warranty.In the first stage,a renewing warranty with deadline(RWD)policy is implemented,where the deadline represents the cumulative uptime threshold.When the cumulative uptime exceeds the deadline,the product will be minimally repaired and kept to the residual warranty period.When RWD is expired,the replacement warranty with limited repairs(RWLR)policy is applied.Under the free replacement and pro-rata warranty policy,the corresponding two-stage cost optimization model is established from the manufacturer’s perspective,the aim is to minimize the cost rate and obtain the optimal warranty period.A numerical example is provided to illustrate the validity of the proposed model,and the sensitivity analysis is also carried out.
基金the National Society Science Foundation of China(No.14GJ003-135)the National Natural Science Foundation of China(No.71401173)
文摘In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufacturers(customers) may have to decide whether or not to provide(buy) the warranty considering upgrading maintenance.This paper presents a mathematical model considering upgrading maintenance for products with multiple failure modes.Upgrading maintenance is taken into account with the assumption that the warranted item is upgraded one time during the warranty cycle.The upgrading maintenance is carried out,when the corrective maintenance is taken place.After upgrading maintenance,the high-quality spares are used to replace the failed item.In the numerical example,the results of the models are calculated.Monte Carlo simulation results are compared with the analytical results to demonstrate the correctness and efficiency of the proposed models considering upgrading maintenance.
基金Supported by the Scientific Research Project of Ministry of Land and Resources of the People's Public of China in Public Welfare Industries(201011006)
文摘To create a scientific way to renew the grades of cultivated land at county level, monitoring points were set up according to the monitoring control regions and grade types of cultivated land in Daxing District, Beijing, and soil samples were collected to carry out chemical analysis. Afterwards, the input and output data of cultivated land in each village were surveyed to renew the grades of cultivated land. The results indicate that the average natural grade of cultivated land was 8.4, which was equal to that of 2004; the average utilization grade was 8.1, which was slightly higher than that of 2004; the average economic grade was 9.9, which was lower than that of 2004. It is concluded that it is scientific to renew cultivated land grades through scientifically setting monitoring points according to the monitoring control regions and grade types of cultivated land.
文摘Distinguished Vice-Minister Li Jinjun,Ladies and gentlemen,friends,It is a delightful event for all of us to renew the MOU between FES and CAFIU for the nineth time.Years of cooperation and fruitful results are worth celebrating.For a long period of time,the two organizations have been making efforts to put the thoughts of Deng Xiaopeng and Willy Brandt into practice,namely,the thoughts of having dialogue and enhancing mutual understanding while
文摘Respected President Beck,Respected vips,Ladies,gentlemen,friends,I am delighted to sign the Memorandum of Understanding on Cooperation between CAFIU and FES with President Beck here today.This is an important moment in the history of the relations between CAFIU and FES,which signifies that the sound cooperation between both sides will
文摘美国作曲家玛丽莲·丝露德(Marilyn Shrude)是著名的钢琴家和作曲家,她所作的《重新开始的神话》(Renewing the Myth)是当代萨克斯管经典音乐作品之一,也是萨克斯管最著名的比赛——第三届阿道夫萨克斯管比赛的必奏曲目.我们通过对这首作品的分析可以了解萨克斯管当代音乐的曲式和技巧.
基金Supported by Terry Fox Fund for Cancer Research and UAE University
文摘The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells. The stem cells give rise to three main progenitors: prepit, preneck and preparietal cells. Parietal cells develop either directly from the noncycling preparietal cells or less commonly via differentiation of the cycling prepit and preneck cell progenitors. The formation of a parietal cell is a sequential process which involves diminishment of glycocalyx, production of cytoplasmic tubulovesicles, an increase in number and length of microvilli, an increase in number and size of mitochondria, and fi nally, expansion and invagination of the apical membrane with the formation of an intracellular canalicular system. Little is known about the genetic counterparts of these morphological events. However, the time dimension of parietal cell production and the consequences of its alteration on the biological features of the gastric gland are well documented. The production of a new parietal cell takes about 2 d. However, mature parietal cells have a long lifespan during which they migrate bidirectionally while their functional activity for acid secretion gradually diminishes. Following an average lifespan of about 54 d, in mice, old parietal cells undergo degeneration and elimination. Various approaches for genetic alteration of the development of parietal cells have provided evidence in support of their role as governors of the stem/progenitor cell proliferation and differentiation programs. Revealing the dynamic features and the various roles of parietal cells would help in a better understanding of the biological features of the gastric glands and would hopefully help in providing a basis for the development of new strategies for prevention, early detection and/or therapy of various gastric disorders in which parietal cells are involved, such as atrophic gastritis, peptic ulcer disease and gastric cancer.
基金financially supported by the National Science Foundation of China grant (62322407, 22279034, 52261145698, W2421103)Shanghai Science and Technology Innovation Action Plan (22ZR1418900, 24110714100)+1 种基金the Swedish Research Council (project grant no. 2020-04538)the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Link?ping University (Faculty Grant SFO Mat LiU no. 2009 00971)。
文摘Improving the quality of life for Earth's growing population is a complex task that requires the development of new technologies and materials. Perhaps the biggest challenge is access to clean and renewable energy sources that can drive a sustainable future. Photovoltaics, today mainly represented by silicon-based solar cells, convert solar energy into electricity and is already an important component in the renewable energy portfolio.
基金supported in part by the National Natural Science Foundation of China under Grant No.61473066in part by the Natural Science Foundation of Hebei Province under Grant No.F2021501020+2 种基金in part by the S&T Program of Qinhuangdao under Grant No.202401A195in part by the Science Research Project of Hebei Education Department under Grant No.QN2025008in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant No.22567637H
文摘Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.
文摘Solar energy, as a renewable resource, is an effective solution to the current global energy shortage problem. To actively respond to the call for "carbon peak" and "carbon neutrality", solar cell industry has experienced unprecedented development. The full utilization of solar energy resources remains an urgent issue to be addressed.
基金supported by the Science and Technology Project of the State Grid Corporation of China,Grant number 5700-202223189A-1-1-ZN.
文摘Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.
文摘In 2024,China’s export volume reached RMB 25.45 trillion,a year-on-year increase of 7.1%,a new historical high.This marked a new level of competitiveness for Chinese enterprises in the global market.From the traded product going overseas to today’s brand and industrial chain going overseas,Chinese enterprises have entered a new stage of development when it comes to global expansion,especially in manufacturing fields such as renewable energy,electric vehicles,electronic products,home appliances,and machinery.
基金supported by the National Natural Science Foundation of China(No.22101289)Hundred Talents Programs in Chinese Academy of Science,and the Ningbo S&T Innovation 2025 Major Special Program(No.2022Z205).
文摘Electrochemical CO_(2) reduction reaction(CO_(2)RR),driven by renewable energy,offers a promising solution to mitigate increasing CO_(2) emissions and establish a carbon-neutral cycle.Copper is a highly selective and active catalyst for CO_(2)RR but suffers from structural reconstruction challenges.Hybrid organic/inorganic materials address these issues by offering customizable compositions and interfaces.Recently,Buonsanti’s team developed hybrid Cu@AlOx nanocrystals with tunable alumina shells via a colloidal atomic layer deposition approach,achieving stable and selective methane production during CO_(2)RR.Mechanistic studies reveal that the alumina shell stabilizes oxidized copper species through Cu^(2+)-O-Al motifs coordinated with AlO_(4) Lewis acid sites,reducing copper dissolution and structural reconstruction.This study provides key insights into the mechanism underlying stabilization,highlighting the critical role of Lewis acidity in preserving the structural integrity of the catalyst.This highlight review aims to inspire the development of other high-performance and stable catalysts through colloidal atomic layer deposition strategies.
基金funded through Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia—project number“NBU-FFR-2025-3623-06”.
文摘Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following this worldwide trend,Brunei’s government has initiated several strategic programs aimed at encouraging the establishment of energy from renewable sources in the nation’s energy mix.These initiatives are designed not only to support environmental sustainability but also to make energy from renewable sources increasingly competitive in comparison to more conventional energy sources like gas and oil,which have historically dominated Brunei’s energy market.The optimization of a hybrid energy system that combines diesel generators,solar photovoltaic(PV)panels,and the national power grid is the focus of this study.The objective is to identify the most cost-effective and environmentally sustainable configuration that can reliably meet local energy demands.During optimization,several configuration was tried and tested,including only grid,PV and Grid and PV-generator.HOMER(Hybrid Optimization of Multiple Energy Resources)software,a popular simulation tool that makes it possible to simulate and analyze hybrid energy systems,is utilized in the optimization process.Inside the HOMER Pro optimization,various system configuration is taken into account for the optimization.While simulating,it takes into account different combinations of components such as solar panels,wind turbines and batteries.Later on,it is being ranked by different factors such as net present cost(NPC),Cost of Energy(COE),etc.A comprehensive techno-economic research is carried out to evaluate various system configurations,considering key performance indicators such as total energy generation cost,operational expenditure,and greenhouse gas emissions.The results provide valuable insights into how renewable-based hybrid systems can reduce environmental impact while maintaining economic viability,supporting Brunei’s broader goals of energy diversification and sustainability.The study also emphasizes how such hybrid systems could be scaled for off-grid and rural populations in Brunei,where a dependable electricity supply is still a problem.Furthermore,sensitivity analyses were performed to evaluate the effects of variations in solar irradiation,load demand,and fuel prices on the overall system performance.Policymakers and energy planners can use these insights to help them make data-driven decisions about future investments in infrastructure for renewable energy.
文摘Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems.
文摘Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%.
基金supported by Science and Engineering Research Board(SERB),India for the support(File no.EEQ/2021/000172)。
文摘Photo-assisted energy harvesting plays a crucial role in present research and future scenario in the field of technology advancements towards efficient energy utilization.Modern world sees an opportunity in developing such technologies which are self-powered,self-driven and self-healing that can be utilized in the fields including portable,wearable electronics,internet of things(IOT)devices,electric vehicles,space applications,renewable energy systems,and smart grid applications.The present review gives an insight to the aspects in the present and future developmental goals in the field of light driven supercapacitors(LDS).Such systems comprise of active components viz.layer material selection in the solar cell and supercapacitors.A comprehensive study to achieve high absorption,power/energy density and efficient storage of absorbed energy has been discussed.The major factors for device design and mechanism adopted for efficient photo conversion and their subsequent storage as LDS depends on efficient light intensity source,surface area,optimization of the structure of electrodes,electrode selection,charge separation efficiency etc.A comprehensive analysis of the previously developed LDS with their optimized parameters has been presented.Various challenges viz.material selection,compatibility of layers,lower photovoltaic conversion and increased resistivity on integrating the energy conversion and storage module has also been discussed.In order to achieve high-performance LDS and to enhance their practicality various steps are suggested for the future development of LDS at industry and commercial scale.
文摘With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of resource sharing.Microgrid can realize the flexibility of distributed power supply and the application of high efficiency,solving the problem of a large number and variety of forms of the power grid.Based on this,this paper will discuss the operation control strategy of microgrid based on a new energy grid connection,and provide constructive ideas for high-quality operation of microgrid.