Aiming at the problem that the existence of inclusions in the tundish continuous casting process can easily lead to quality defects of the slab,the stainless steel continuous casting tundish was taken as the research ...Aiming at the problem that the existence of inclusions in the tundish continuous casting process can easily lead to quality defects of the slab,the stainless steel continuous casting tundish was taken as the research object.The effects of flow control device,inclusion density and inclusion size on the mixing characteristics of molten steel and inclusion behavior in tundish were studied.The results showed that compared with the tundish without flow control device,the average residence time of molten steel was prolonged by about 49 s,the dead zone volume fraction was reduced by 8.93%,and the piston fluid integral rate was increased by 12.68%.In the turbulence inhibitor(TI)tundish with weir-dam combination,the removal rate of inclusions with a density of 2700 kg m^(-3) and a particle size of 5 lm is 63.32%,while the removal rate of large inclusions with a density of 150μm could reach 89.04%.When the inclusion particle size was 10-50μm and the density was 2700-4500 kg m^(-3),the effect of inclusion density on inclusion removal rate was small.At the same time,when weir-dam combination TI tundish was set,the inclusions were mainly limited to the slag-metal interface of the first and second chambers of the tundish.The removal rate of inclusions in the first chamber was generally improved,with 10μm inclusions accounting for 47.67% and 150μm inclusions accounting for 60.69%.Furthermore,it has the best effect on the removal of small-size inclusions,especially those less than 70μm.展开更多
Comparative experiments were conducted to reveal the removal behaviors of three kinds of silicon carbide (SIC) ceramics during polishing and the effects of ceramic microstructure on the surface quality were also rep...Comparative experiments were conducted to reveal the removal behaviors of three kinds of silicon carbide (SIC) ceramics during polishing and the effects of ceramic microstructure on the surface quality were also reported. Experimental results show that the second phase in SiC ceramics plays an important role in the surface quality when its size is large enough. The surface quality is enslaved to the formation of steps at interfaces between second phase and SiC matrix that results from different elastic modulus and hardness between two phases. Under 3 μm abrasive grains polishing condition, different SiC ceramics show different removal mechanisms. With decreasing abrasive grain size, all of different SiC ceramics exhibit a ductile removal mode, which decreases surface roughness efficiently.展开更多
The excellent performance of laser-induced removal has been widely recognized,yet the limitation of its applications has been gradually approached for complex multilayer coatings in practical situations.Therefore,it i...The excellent performance of laser-induced removal has been widely recognized,yet the limitation of its applications has been gradually approached for complex multilayer coatings in practical situations.Therefore,it is necessary to clarify the laser-induced removal mechanisms of different material layers,which may contribute to guiding precise and controllable layer-by-layer removal and subsequent repair.Herein,the laser-induced layer-by-layer removal of FeCo-based multilayer wave-absorbing coatings was designed and verified.The macro/micro morphologies and elemental analysis indicated that the removal of the topcoat and wave-absorbing layer was dominated by thermal ablation.Interestingly,experiments and simulations demonstrated that a shift in the removal mechanism,i.e.,from the ablation mechanism to the stripping mechanism,occurred when the laser irradiated the primer.It is mainly attributed to the competing contributions of temperature rise and thermal stress to the removal effect.Subsequent macrodynamic behavior captured by a high-speed camera also validated the combination of both re-moval mechanisms.Additionally,the evolution of the crystalline phase and element valence state was revealed.Further laser-induced breakdown spectroscopy revealed the microscopic material motions dur-ing the layer-by-layer removal,including molecular bond breaking induced by multiphoton absorption,atomic ionization,excitation and compounding of electrons and ions,crystal lattice deformation caused by electron-phonon coupling,etc.Based on the above analysis,the thermo-mechanical action mechanisms and microscopic motion models of laser-induced layer-by-layer removal for FeCo-based multilayer wave-absorbing coatings were established,which is expected to be an ideal method for breaking through the limitation of laser-induced removal’s applications.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52174321,51874203 and 52074186).
文摘Aiming at the problem that the existence of inclusions in the tundish continuous casting process can easily lead to quality defects of the slab,the stainless steel continuous casting tundish was taken as the research object.The effects of flow control device,inclusion density and inclusion size on the mixing characteristics of molten steel and inclusion behavior in tundish were studied.The results showed that compared with the tundish without flow control device,the average residence time of molten steel was prolonged by about 49 s,the dead zone volume fraction was reduced by 8.93%,and the piston fluid integral rate was increased by 12.68%.In the turbulence inhibitor(TI)tundish with weir-dam combination,the removal rate of inclusions with a density of 2700 kg m^(-3) and a particle size of 5 lm is 63.32%,while the removal rate of large inclusions with a density of 150μm could reach 89.04%.When the inclusion particle size was 10-50μm and the density was 2700-4500 kg m^(-3),the effect of inclusion density on inclusion removal rate was small.At the same time,when weir-dam combination TI tundish was set,the inclusions were mainly limited to the slag-metal interface of the first and second chambers of the tundish.The removal rate of inclusions in the first chamber was generally improved,with 10μm inclusions accounting for 47.67% and 150μm inclusions accounting for 60.69%.Furthermore,it has the best effect on the removal of small-size inclusions,especially those less than 70μm.
基金supported by the Chinese National Defense Basic Research Project and the Innovation Project of Shanghai Institute of Ceramics,Chinese Academy of Sciences
文摘Comparative experiments were conducted to reveal the removal behaviors of three kinds of silicon carbide (SIC) ceramics during polishing and the effects of ceramic microstructure on the surface quality were also reported. Experimental results show that the second phase in SiC ceramics plays an important role in the surface quality when its size is large enough. The surface quality is enslaved to the formation of steps at interfaces between second phase and SiC matrix that results from different elastic modulus and hardness between two phases. Under 3 μm abrasive grains polishing condition, different SiC ceramics show different removal mechanisms. With decreasing abrasive grain size, all of different SiC ceramics exhibit a ductile removal mode, which decreases surface roughness efficiently.
基金support from the National Natural Science Foundation of China(Nos.52075246 and U2341264)the Natural Science Foundation of Jiangsu Province(Nos.BK20211568 and BZ2023045)+2 种基金National Science and Technology Major Project of China(No.J2019-Ⅲ-0010-0054)Fundamental Research Funds for the Central Universities(No.NE2022005)Liaoning Provincial Key Laboratory of Aircraft Ice Protection(No.XFX20220301).
文摘The excellent performance of laser-induced removal has been widely recognized,yet the limitation of its applications has been gradually approached for complex multilayer coatings in practical situations.Therefore,it is necessary to clarify the laser-induced removal mechanisms of different material layers,which may contribute to guiding precise and controllable layer-by-layer removal and subsequent repair.Herein,the laser-induced layer-by-layer removal of FeCo-based multilayer wave-absorbing coatings was designed and verified.The macro/micro morphologies and elemental analysis indicated that the removal of the topcoat and wave-absorbing layer was dominated by thermal ablation.Interestingly,experiments and simulations demonstrated that a shift in the removal mechanism,i.e.,from the ablation mechanism to the stripping mechanism,occurred when the laser irradiated the primer.It is mainly attributed to the competing contributions of temperature rise and thermal stress to the removal effect.Subsequent macrodynamic behavior captured by a high-speed camera also validated the combination of both re-moval mechanisms.Additionally,the evolution of the crystalline phase and element valence state was revealed.Further laser-induced breakdown spectroscopy revealed the microscopic material motions dur-ing the layer-by-layer removal,including molecular bond breaking induced by multiphoton absorption,atomic ionization,excitation and compounding of electrons and ions,crystal lattice deformation caused by electron-phonon coupling,etc.Based on the above analysis,the thermo-mechanical action mechanisms and microscopic motion models of laser-induced layer-by-layer removal for FeCo-based multilayer wave-absorbing coatings were established,which is expected to be an ideal method for breaking through the limitation of laser-induced removal’s applications.