The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in ...The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.展开更多
The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses ...The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses the critical role that enabling technologies have played in the delivery of remote and automated capability for longwall mining. A brief historical account is given to highlight key technical contributions which have influenced the direction and development of present-day longwall technology. The current state of longwall automation is discussed with particular attention drawn to the technologies that enable automated capability. Outcomes are presented from an independently conducted case study that assessed the impact that CSIRO's LASC longwall automation research has made to the longwall mining industry in Australia. Importantly, this study reveals how uptake of this innova- tive technology has significantly benefitted coal mine productivity, improved working conditions for personnel and enhanced environmental outcomes. These benefits have been widely adopted with CSIRO automation technology being used in 60 per cent of all Australian underground operations. International deployment of the technology is also emerging. The paper concludes with future challenges and opportunities to highfight the ongoing scope for longwall automation research and development.展开更多
The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills i...The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.展开更多
基金the National Basic Research Programs of China (No. 2011CB201204)the National Natural Science Foundation of China (Nos. 51074160)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2010QNA03)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education institutions for their support for this project
文摘The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.
文摘The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses the critical role that enabling technologies have played in the delivery of remote and automated capability for longwall mining. A brief historical account is given to highlight key technical contributions which have influenced the direction and development of present-day longwall technology. The current state of longwall automation is discussed with particular attention drawn to the technologies that enable automated capability. Outcomes are presented from an independently conducted case study that assessed the impact that CSIRO's LASC longwall automation research has made to the longwall mining industry in Australia. Importantly, this study reveals how uptake of this innova- tive technology has significantly benefitted coal mine productivity, improved working conditions for personnel and enhanced environmental outcomes. These benefits have been widely adopted with CSIRO automation technology being used in 60 per cent of all Australian underground operations. International deployment of the technology is also emerging. The paper concludes with future challenges and opportunities to highfight the ongoing scope for longwall automation research and development.
文摘The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.