期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Research on Extraction Method of Surface Information Based on Multi-Feature Combination Such as Fractal Texture 被引量:1
1
作者 Zhen Chen Yiyang Zheng 《Journal of Geoscience and Environment Protection》 2023年第10期50-66,共17页
Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating t... Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating terrains;3) Small fragmented land;4) Indistinguishable shadows of surface objects. It is our top priority to clarify how to use the concept of big data (Data mining technology) and various new technologies and methods to make complex surface remote sensing information extraction technology develop in the direction of automation, refinement and intelligence. In order to achieve the above research objectives, the paper takes the Gaofen-2 satellite data produced in China as the data source, and takes the complex surface remote sensing information extraction technology as the research object, and intelligently analyzes the remote sensing information of complex surface on the basis of completing the data collection and preprocessing. The specific extraction methods are as follows: 1) extraction research on fractal texture features of Brownian motion;2) extraction research on color features;3) extraction research on vegetation index;4) research on vectors and corresponding classification. In this paper, fractal texture features, color features, vegetation features and spectral features of remote sensing images are combined to form a combination feature vector, which improves the dimension of features, and the feature vector improves the difference of remote sensing features, and it is more conducive to the classification of remote sensing features, and thus it improves the classification accuracy of remote sensing images. It is suitable for remote sensing information extraction of complex surface in southern China. This method can be extended to complex surface area in the future. 展开更多
关键词 Complex Surface remote sensing Information Extraction remote sensing land classification Transfer Learning Brownian Motion Fractal Texture
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部