Objective:To evaluate the potential prophylactic activity of traditional polyherbal remedy against malaria.Methods:A traditional polyherbal remedy against malaria from Odisha,India was evaluated for its potential prop...Objective:To evaluate the potential prophylactic activity of traditional polyherbal remedy against malaria.Methods:A traditional polyherbal remedy against malaria from Odisha,India was evaluated for its potential prophylactic activity using in vitro hepatic cell lines assay and the murine malaria system Plasmodium yoelii yoelii/Anopheles stephensi.Results:The polyherbal extract inhibited the Plasmodium yoelii hepatic stages in vitro(IC500.74 mg/m L),a therapeutic index of 9.54.In mice treated with the aqueous extract(2 000 mg/kg/day),peak parasitaemia values were 81%lower in the experimental2.35%±0.14%as compared to controls 12.62%±0.52%(P<0.001),suggesting significant prophylactic activity.Conclusions:The observations provide a proof of concept for a traditional malaria prophylactic remedy used by tribal populations in India.展开更多
Malaria is one of the six major seriousepidemic diseases prevalent in tropical andsubtropical areas.Beginning from 1967,specialinstititutions,organized by professional researchworkers,were established for searching an...Malaria is one of the six major seriousepidemic diseases prevalent in tropical andsubtropical areas.Beginning from 1967,specialinstititutions,organized by professional researchworkers,were established for searching antima-larial drugs through research work in chemistryand traditional Chinese medicine.As early as in770-221 BC,the“Recipes for Treating 52 Kindsof Diseases”,a textual relic unearthed inMawangdui,described the application of artemisiaannue as an antimalarial remedy.In 341,Dr.Ge Hong of the Iin Dynasty recorded,in his“Handbook of Prescriptions for EmergencyTreatment”,artemisia annua as an ideal anti-malarial drug.展开更多
Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examp...Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examples of TMs that contain active substances such as plant parts or other plant components that are thought to have therapeutic advantages.This study review aimed to identify the herbs commonly used,reasons for use,and effect of use,to make adequate recommendations on herbal medicine use as a remedy for pregnancy and labor.Incorporating evidence from reviews,personal correspondence,and diaries,this study demonstrates that about 80%of people used TM such as herbal remedies for sickness diagnosis,prevention,treatment,and promotion of general well‑being.Due to its accessibility,cost,and availability,TM is usually used by expectant mothers.Examples of TM used in pregnancy and labor include honey,aloe,raspberry,jute mallow,and hibiscus leaves.It is important to note that its use in pregnancy and labor can be beneficial or harmful to both mother and child.Lack of standardization,financial risk,lack of safety,and effectiveness are challenges to TM.There is a need of creating awareness of the safe use and effects of TM in pregnancy and labor through the provision of health education programs for women in the community.展开更多
treat,cure,heal,remedy 这四个词都是指由患病或受伤恢复到健康状况,尤指靠医疗的功效,但在实际应用中是有区别的。现分述如下: 一、treat 1.treat:vt.医治、治疗;强调治疗的动作或医治的过程,不涉及治疗的结果。 1)The dentist is tre...treat,cure,heal,remedy 这四个词都是指由患病或受伤恢复到健康状况,尤指靠医疗的功效,但在实际应用中是有区别的。现分述如下: 一、treat 1.treat:vt.医治、治疗;强调治疗的动作或医治的过程,不涉及治疗的结果。 1)The dentist is treating my teeth. 牙医师在治疗我的牙齿。 2)Which doctor is treating you for tis trouble?展开更多
Asovereign remedy for coronary heart disease, the traditional Chinese patent medicine Shan Hai Dan, in the form of tablets, capsules, oral jelly, drinks and health wine, and produced by the Shan Hai Dan Industrial Ent...Asovereign remedy for coronary heart disease, the traditional Chinese patent medicine Shan Hai Dan, in the form of tablets, capsules, oral jelly, drinks and health wine, and produced by the Shan Hai Dan Industrial Enterprise Group. is a discovery made by Zhao Guoxin, professor at the Si’an Traditional Chinese Medicine and展开更多
Nablus-Al Bathan Road which connects Nablus City and Jordan Valley in the West Bank of Palestinian Territories, was widened, reconstructed and rehabilitated in 2009, however, between 2010 and 2012 road defects at seve...Nablus-Al Bathan Road which connects Nablus City and Jordan Valley in the West Bank of Palestinian Territories, was widened, reconstructed and rehabilitated in 2009, however, between 2010 and 2012 road defects at several locations were observed. To fix these defects especially at station 2</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">100 of the road, soil replacement in the body of the road and big boulders to support the edge of the road were used. Unfortunately, large settlement occurred in the part of the road under maintenance and more sliding and slope instability occurred in the road at station 2</span><span style="font-family:""></span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">100 during the remedial measures. Studies were carried out to find the causes of this problem. These included surveying of the area, geotechnical studies</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(making trial pits, performing geophysical se</span><span style="font-family:Verdana;">ismic exploration and digging out several boreholes), in addition to slope stability analysis. It was found that the main causes of landslides were types of soils at the site, high slopes, groundwater recharged from rainfall and changing of weights (cut and fill). Remedy measures were suggested to overcome sliding problem based on available resources and local technology.展开更多
The building of Mali's first drug factory by a Chinese company in 2015 marked a major turning point in the continent'spharmaceutical industryNOT so long ago,Sanankoroba was a deserted place.But today,a top-grade dru...The building of Mali's first drug factory by a Chinese company in 2015 marked a major turning point in the continent'spharmaceutical industryNOT so long ago,Sanankoroba was a deserted place.But today,a top-grade drug factory proudly stands in this small town located near the capital Bamako in south Mali.The factory is owned by the Malian Branch of Humanwell Healthcare(Group)Co.Ltd.,a Chinese pharmaceutical company whose decision to enter the African market dates back to 2009.展开更多
Vulnerabilities are a known problem in modern Open Source Software(OSS).Most developers often rely on third-party libraries to accelerate feature implementation.However,these libraries may contain vulnerabilities that...Vulnerabilities are a known problem in modern Open Source Software(OSS).Most developers often rely on third-party libraries to accelerate feature implementation.However,these libraries may contain vulnerabilities that attackers can exploit to propagate malicious code,posing security risks to dependent projects.Existing research addresses these challenges through Software Composition Analysis(SCA)for vulnerability detection and remediation.Nevertheless,current solutions may introduce additional issues,such as incompatibilities,dependency conflicts,and additional vulnerabilities.To address this,we propose Vulnerability Scan and Protection(VulnScanPro),a robust solution for detection and remediation vulnerabilities in Java projects.Specifically,VulnScanPro builds a finegrained method graph to identify unreachable methods.The method graph is mapped to the project’s dependency tree,constructing a comprehensive vulnerability propagation graph that identifies unreachable vulnerable APIs and dependencies.Based on this analysis,we propose three solutions for vulnerability remediation:(1)Removing unreachable vulnerable dependencies,thereby resolving security risks and reducing maintenance overhead.(2)Upgrading vulnerable dependencies to the closest non-vulnerable versions,while pinning the versions of transitive dependencies introduced by the vulnerable dependency,in order to mitigate compatibility issues and prevent the introduction of new vulnerabilities.(3)Eliminating unreachable vulnerable APIs,particularly when security patches are either incompatible or absent.Experimental results show that these solutions effectively mitigate vulnerabilities and enhance the overall security of the project.展开更多
Since 2006, amid explosive growth of auto sales, congestion has become a headache for Chinese cities, big and small. Now, it’s common that many downtown streets, especially in developed eastern and central
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remedi...Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.展开更多
Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil.Phytoremediation of contaminated soil is an environmental and sustainable technology,and soil na...Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil.Phytoremediation of contaminated soil is an environmental and sustainable technology,and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals.However,the effects of high concentrations of multiple heavy metals(HCMHMs)on plants and native soil microorganisms remain uncertain.Thus,further clarification of themechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required.Using the plant Sedum alfredii(S.alfredii)to restore HCMHM-contaminated soil,we further explored the mechanism of S.alfredii and native soil microorganisms in the remediation of HCMHM soils.The results showed that(i)S.alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil,which is conducive to the effect of plants on heavy metals.In addition,it can also enrich the absorbed heavy metals in its roots and leaves;(ii)native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes,such as trpE,trpG,bjaI,rpfF,ACSL,and yidC,and promote the expression of the pathway that converts serine to cysteine,then synthesize substances to chelate heavy metals.In addition,we speculated that genes such as K19703,K07891,K09711,K19703,K07891,and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals.The results provide scientific basis for S.alfredii to remediate heavy metals contaminated soils,and confirm the potential of phytoremediation of HCMHM contaminated soil.展开更多
New pollutants have become a significant concern in China's efforts toward ecological and environmental protection.Trichloromethane(TCM,CHCl_3),one of these new pollutants,is primarily released into soil and groun...New pollutants have become a significant concern in China's efforts toward ecological and environmental protection.Trichloromethane(TCM,CHCl_3),one of these new pollutants,is primarily released into soil and groundwater through various industrial activities.Over the past four decades,researchers have consistently focused on the remediation of TCM-contaminated soil and groundwater using microorganisms and iron-based materials,which hold significant potential for practical application.Understanding the remediation process and the factors influencing TCM degradation through these two methods is crucial for advancing both theoretical research and practical implementation.This review focuses on the degradation mechanisms of TCM in soil and groundwater by microorganisms and iron-based materials.It summarizes the active microorganisms and modified iron-based materials with high TCM degradation capabilities,discusses enhancement measures for both methods in the remediation process,and finally,outlines the challenges faced by these methods.The goal is to provide theoretical references for efficient remediation of TCM-contaminated soil and groundwater.展开更多
Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to induci...Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to inducing antibiotic-HMs combined pollution.Recently,frequent human activities have led to more prominent antibiotics-HMs combined contamination in agricultural soils,especially the production and spread of antibiotic resistance genes(ARGs),heavy metal resistance genes(MRGs),antibiotic resistant bacteria(ARB),and antibiotics-HMs complexes(AMCs),which seriously threaten soil ecology and human health.This review describes the main sources(Intrinsic and manmade sources),composite mechanisms(co-selective resistance,oxidative stress,and Joint toxicity mechanism),environmental fate and the potential risks(soil ecological and human health risks)of antibiotics and HMs in agricultural soils.Finally,the current effective source blocking,transmission control,and attenuation strategies are classified for discussion,such as the application of additives and barrier materials,as well as plant and animal remediation and bioremediation,etc.,pointing out that future research should focus on the whole chain process of“source-processterminal”,intending to provide a theoretical basis and decision-making reference for future research.展开更多
Dibromoethane is a widespread,persistent organic pollutant.Biochars are known mediators of reductive dehalogenation by layered Fe^(Ⅱ)-Fe^(Ⅲ)hydroxides(green rust),which can reduce 1,2-dibromoethane to innocuous brom...Dibromoethane is a widespread,persistent organic pollutant.Biochars are known mediators of reductive dehalogenation by layered Fe^(Ⅱ)-Fe^(Ⅲ)hydroxides(green rust),which can reduce 1,2-dibromoethane to innocuous bromide and ethylene.However,the critical characteristics that determine mediator functionality are lesser known.Fifteen biochar substrates were pyrolyzed at 600℃and 800℃,characterized by elemental analysis,X-ray photo spectrometry C and N surface speciation,X-ray powder diffraction,specific surface area analysis,and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions.A statistical analysis was performed to determine the biochar properties,critical for debromination kinetics and total debromination extent.It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane,that the highest first order rate constant was 0.082/hr,and the highest debromination extent was 27%in reactivity experiments with 0.1μmol(20μmol/L)1,2-dibromoethane,≈22 mmol/L Fe^(Ⅱ)GR,and 0.12 g/L soybean meal biochar(7 days).Contents of Ni,Zn,N,and P,and the relative contribution of quinone surface functional groups were significantly(p<0.05)positively correlated with 1,2-dibromoethane debromination,while adsorption,specific surface area,and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.展开更多
The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the phy...The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the physicochemical properties of ethylene diamine tetraacetic acid(EDTA)solutions for the removal of lead(Pb)and cadmium(Cd)from a contaminated clayey soil.Furthermore,EDTA concentration,magnetization strength,and magnetization time were varied as parameters for enhancing the contact between contaminant and washing solution to improve remediation efficiency.The results showed that after magnetization,the viscosities,surface tensions,and contact angles of EDTA solutions decreased,whereas the electrical conductivity and pH increased.In particular,the viscosities of high-concentration EDTA solutions increased with increasing magnetic field strength and magnetization time.The magnetized EDTA solutions increased the maximum removal rates of Cd and Pb by 64.46% and 35.49%,respectively,compared to the unmagnetized EDTA solutions.The results highlighted the efficient metal removal by magnetized washing solutions due to the better contact between the washing solutions and the contaminants.The magnetic-enhanced soil washing method was proven to be efficient,cost-effective,and easily implementable for enhancing heavy metal removal.This study provides a valuable reference for improving the efficiency of chemical washing for heavy metal-contaminated clayey soils.展开更多
基金Aquarius Group of Companies,SingaporeETC CAPTURED Programme,the Netherlands(Grant No.DGIS/D)
文摘Objective:To evaluate the potential prophylactic activity of traditional polyherbal remedy against malaria.Methods:A traditional polyherbal remedy against malaria from Odisha,India was evaluated for its potential prophylactic activity using in vitro hepatic cell lines assay and the murine malaria system Plasmodium yoelii yoelii/Anopheles stephensi.Results:The polyherbal extract inhibited the Plasmodium yoelii hepatic stages in vitro(IC500.74 mg/m L),a therapeutic index of 9.54.In mice treated with the aqueous extract(2 000 mg/kg/day),peak parasitaemia values were 81%lower in the experimental2.35%±0.14%as compared to controls 12.62%±0.52%(P<0.001),suggesting significant prophylactic activity.Conclusions:The observations provide a proof of concept for a traditional malaria prophylactic remedy used by tribal populations in India.
文摘Malaria is one of the six major seriousepidemic diseases prevalent in tropical andsubtropical areas.Beginning from 1967,specialinstititutions,organized by professional researchworkers,were established for searching antima-larial drugs through research work in chemistryand traditional Chinese medicine.As early as in770-221 BC,the“Recipes for Treating 52 Kindsof Diseases”,a textual relic unearthed inMawangdui,described the application of artemisiaannue as an antimalarial remedy.In 341,Dr.Ge Hong of the Iin Dynasty recorded,in his“Handbook of Prescriptions for EmergencyTreatment”,artemisia annua as an ideal anti-malarial drug.
文摘Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examples of TMs that contain active substances such as plant parts or other plant components that are thought to have therapeutic advantages.This study review aimed to identify the herbs commonly used,reasons for use,and effect of use,to make adequate recommendations on herbal medicine use as a remedy for pregnancy and labor.Incorporating evidence from reviews,personal correspondence,and diaries,this study demonstrates that about 80%of people used TM such as herbal remedies for sickness diagnosis,prevention,treatment,and promotion of general well‑being.Due to its accessibility,cost,and availability,TM is usually used by expectant mothers.Examples of TM used in pregnancy and labor include honey,aloe,raspberry,jute mallow,and hibiscus leaves.It is important to note that its use in pregnancy and labor can be beneficial or harmful to both mother and child.Lack of standardization,financial risk,lack of safety,and effectiveness are challenges to TM.There is a need of creating awareness of the safe use and effects of TM in pregnancy and labor through the provision of health education programs for women in the community.
文摘treat,cure,heal,remedy 这四个词都是指由患病或受伤恢复到健康状况,尤指靠医疗的功效,但在实际应用中是有区别的。现分述如下: 一、treat 1.treat:vt.医治、治疗;强调治疗的动作或医治的过程,不涉及治疗的结果。 1)The dentist is treating my teeth. 牙医师在治疗我的牙齿。 2)Which doctor is treating you for tis trouble?
文摘Asovereign remedy for coronary heart disease, the traditional Chinese patent medicine Shan Hai Dan, in the form of tablets, capsules, oral jelly, drinks and health wine, and produced by the Shan Hai Dan Industrial Enterprise Group. is a discovery made by Zhao Guoxin, professor at the Si’an Traditional Chinese Medicine and
文摘Nablus-Al Bathan Road which connects Nablus City and Jordan Valley in the West Bank of Palestinian Territories, was widened, reconstructed and rehabilitated in 2009, however, between 2010 and 2012 road defects at several locations were observed. To fix these defects especially at station 2</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">100 of the road, soil replacement in the body of the road and big boulders to support the edge of the road were used. Unfortunately, large settlement occurred in the part of the road under maintenance and more sliding and slope instability occurred in the road at station 2</span><span style="font-family:""></span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">100 during the remedial measures. Studies were carried out to find the causes of this problem. These included surveying of the area, geotechnical studies</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(making trial pits, performing geophysical se</span><span style="font-family:Verdana;">ismic exploration and digging out several boreholes), in addition to slope stability analysis. It was found that the main causes of landslides were types of soils at the site, high slopes, groundwater recharged from rainfall and changing of weights (cut and fill). Remedy measures were suggested to overcome sliding problem based on available resources and local technology.
文摘The building of Mali's first drug factory by a Chinese company in 2015 marked a major turning point in the continent'spharmaceutical industryNOT so long ago,Sanankoroba was a deserted place.But today,a top-grade drug factory proudly stands in this small town located near the capital Bamako in south Mali.The factory is owned by the Malian Branch of Humanwell Healthcare(Group)Co.Ltd.,a Chinese pharmaceutical company whose decision to enter the African market dates back to 2009.
基金supported by the National Natural Science Foundation of China(Grant No.62141210)the Fundamental Research Funds for the Central Universities(Grant No.N2217005)+1 种基金Open Fund of State Key Lab.for Novel Software Technology,Nanjing University(KFKT2021B01)111 Project(B16009).
文摘Vulnerabilities are a known problem in modern Open Source Software(OSS).Most developers often rely on third-party libraries to accelerate feature implementation.However,these libraries may contain vulnerabilities that attackers can exploit to propagate malicious code,posing security risks to dependent projects.Existing research addresses these challenges through Software Composition Analysis(SCA)for vulnerability detection and remediation.Nevertheless,current solutions may introduce additional issues,such as incompatibilities,dependency conflicts,and additional vulnerabilities.To address this,we propose Vulnerability Scan and Protection(VulnScanPro),a robust solution for detection and remediation vulnerabilities in Java projects.Specifically,VulnScanPro builds a finegrained method graph to identify unreachable methods.The method graph is mapped to the project’s dependency tree,constructing a comprehensive vulnerability propagation graph that identifies unreachable vulnerable APIs and dependencies.Based on this analysis,we propose three solutions for vulnerability remediation:(1)Removing unreachable vulnerable dependencies,thereby resolving security risks and reducing maintenance overhead.(2)Upgrading vulnerable dependencies to the closest non-vulnerable versions,while pinning the versions of transitive dependencies introduced by the vulnerable dependency,in order to mitigate compatibility issues and prevent the introduction of new vulnerabilities.(3)Eliminating unreachable vulnerable APIs,particularly when security patches are either incompatible or absent.Experimental results show that these solutions effectively mitigate vulnerabilities and enhance the overall security of the project.
文摘Since 2006, amid explosive growth of auto sales, congestion has become a headache for Chinese cities, big and small. Now, it’s common that many downtown streets, especially in developed eastern and central
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金supported by the National Natural Science Foundation of China(Nos.52100184,and U22A20617).
文摘Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.
基金supported by the Fundamental Research Funds for Central PublicWelfare Scientific Research Institutes of China(No.2021-JY-37)the Yellow River Basin Ecological Protection and High-quality Development Joint Study(Phase I)(No.2022-YRUC-01-0202).
文摘Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil.Phytoremediation of contaminated soil is an environmental and sustainable technology,and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals.However,the effects of high concentrations of multiple heavy metals(HCMHMs)on plants and native soil microorganisms remain uncertain.Thus,further clarification of themechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required.Using the plant Sedum alfredii(S.alfredii)to restore HCMHM-contaminated soil,we further explored the mechanism of S.alfredii and native soil microorganisms in the remediation of HCMHM soils.The results showed that(i)S.alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil,which is conducive to the effect of plants on heavy metals.In addition,it can also enrich the absorbed heavy metals in its roots and leaves;(ii)native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes,such as trpE,trpG,bjaI,rpfF,ACSL,and yidC,and promote the expression of the pathway that converts serine to cysteine,then synthesize substances to chelate heavy metals.In addition,we speculated that genes such as K19703,K07891,K09711,K19703,K07891,and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals.The results provide scientific basis for S.alfredii to remediate heavy metals contaminated soils,and confirm the potential of phytoremediation of HCMHM contaminated soil.
基金financially supported by the National Natural Science Foundation of China(Nos.42177239 and 41991330)the“14th Five Year Plan”of Independent Deployment Project of Nanjing Institute of Soil Research,Chinese Academy of Sciences(No.ISSASIP2213)。
文摘New pollutants have become a significant concern in China's efforts toward ecological and environmental protection.Trichloromethane(TCM,CHCl_3),one of these new pollutants,is primarily released into soil and groundwater through various industrial activities.Over the past four decades,researchers have consistently focused on the remediation of TCM-contaminated soil and groundwater using microorganisms and iron-based materials,which hold significant potential for practical application.Understanding the remediation process and the factors influencing TCM degradation through these two methods is crucial for advancing both theoretical research and practical implementation.This review focuses on the degradation mechanisms of TCM in soil and groundwater by microorganisms and iron-based materials.It summarizes the active microorganisms and modified iron-based materials with high TCM degradation capabilities,discusses enhancement measures for both methods in the remediation process,and finally,outlines the challenges faced by these methods.The goal is to provide theoretical references for efficient remediation of TCM-contaminated soil and groundwater.
基金supported by the National Natural Science Foundation of China(No.32171615)the National Key R&D Program of China(2019YFC1804102)。
文摘Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to inducing antibiotic-HMs combined pollution.Recently,frequent human activities have led to more prominent antibiotics-HMs combined contamination in agricultural soils,especially the production and spread of antibiotic resistance genes(ARGs),heavy metal resistance genes(MRGs),antibiotic resistant bacteria(ARB),and antibiotics-HMs complexes(AMCs),which seriously threaten soil ecology and human health.This review describes the main sources(Intrinsic and manmade sources),composite mechanisms(co-selective resistance,oxidative stress,and Joint toxicity mechanism),environmental fate and the potential risks(soil ecological and human health risks)of antibiotics and HMs in agricultural soils.Finally,the current effective source blocking,transmission control,and attenuation strategies are classified for discussion,such as the application of additives and barrier materials,as well as plant and animal remediation and bioremediation,etc.,pointing out that future research should focus on the whole chain process of“source-processterminal”,intending to provide a theoretical basis and decision-making reference for future research.
文摘Dibromoethane is a widespread,persistent organic pollutant.Biochars are known mediators of reductive dehalogenation by layered Fe^(Ⅱ)-Fe^(Ⅲ)hydroxides(green rust),which can reduce 1,2-dibromoethane to innocuous bromide and ethylene.However,the critical characteristics that determine mediator functionality are lesser known.Fifteen biochar substrates were pyrolyzed at 600℃and 800℃,characterized by elemental analysis,X-ray photo spectrometry C and N surface speciation,X-ray powder diffraction,specific surface area analysis,and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions.A statistical analysis was performed to determine the biochar properties,critical for debromination kinetics and total debromination extent.It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane,that the highest first order rate constant was 0.082/hr,and the highest debromination extent was 27%in reactivity experiments with 0.1μmol(20μmol/L)1,2-dibromoethane,≈22 mmol/L Fe^(Ⅱ)GR,and 0.12 g/L soybean meal biochar(7 days).Contents of Ni,Zn,N,and P,and the relative contribution of quinone surface functional groups were significantly(p<0.05)positively correlated with 1,2-dibromoethane debromination,while adsorption,specific surface area,and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.
基金the financial support from the National Natural Science Foundation of China(Nos.42471155,U2004181,and 41371092)partially supported by the Natural Science Foundation of Heilongjiang Province,China(No.LH2024D025)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China(No.SKLFSE201917)the Key Scientific and Technological Project of Henan Province,China(No.192102310503)the National Key Scientific and Technological Project of Henan Province Office of Education,China(No.14B170007)。
文摘The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the physicochemical properties of ethylene diamine tetraacetic acid(EDTA)solutions for the removal of lead(Pb)and cadmium(Cd)from a contaminated clayey soil.Furthermore,EDTA concentration,magnetization strength,and magnetization time were varied as parameters for enhancing the contact between contaminant and washing solution to improve remediation efficiency.The results showed that after magnetization,the viscosities,surface tensions,and contact angles of EDTA solutions decreased,whereas the electrical conductivity and pH increased.In particular,the viscosities of high-concentration EDTA solutions increased with increasing magnetic field strength and magnetization time.The magnetized EDTA solutions increased the maximum removal rates of Cd and Pb by 64.46% and 35.49%,respectively,compared to the unmagnetized EDTA solutions.The results highlighted the efficient metal removal by magnetized washing solutions due to the better contact between the washing solutions and the contaminants.The magnetic-enhanced soil washing method was proven to be efficient,cost-effective,and easily implementable for enhancing heavy metal removal.This study provides a valuable reference for improving the efficiency of chemical washing for heavy metal-contaminated clayey soils.