期刊文献+
共找到661篇文章
< 1 2 34 >
每页显示 20 50 100
Effect of Different Remediators on the Control of Phosphorus Release from Landscape River Sediments
1
作者 RONG Kun 《Journal of Landscape Research》 2017年第5期71-73,共3页
In this paper,different chemicals were added to sediments to control phosphorus release from river sediments by means of different dosing methods,thus reducing the concentration of organic pollutants in overlying wate... In this paper,different chemicals were added to sediments to control phosphorus release from river sediments by means of different dosing methods,thus reducing the concentration of organic pollutants in overlying water.Two remediators,aluminum sulfate and ferric chloride,were respectively added to six groups of experimental samples in three different covering methods,namely injection,mixing and tiling,and a control group was set up.The results showed that at the initially stationary phase of the experiment,the control effect of phosphorus release from sediments of mixing of aluminum sulfate was the most obvious,followed by tiling and injection into the mud;at the finally stationary phase of the experiment,the control effect of phosphorus release from sediments of injection of aluminum sulfate was the most obvious,followed by mixing and tiling.Under the same coverage,the inhibition effect of aluminum sulfate was more obvious than that of ferric chloride.This paper undertook research into the control effect of phosphorus release from sediments to provide a reference point for the control of water eutrophication in the days to come. 展开更多
关键词 Landscape river SEDIMENT Phosphorus release remediator Covering method
在线阅读 下载PDF
Edible Plants:The Magic Wand for Inhibition of Oxidation of Organic Compounds,Remediators of TNT and Adsorbents for Heavy Metals
2
作者 Lovell Agwaramgbo Protiti Khan +2 位作者 Jailen Doyle Christopher O.Alisa Kendall Wise 《Journal of Environmental Science and Engineering(A)》 2023年第2期68-76,共9页
Phytoremediation is a viable,effective,and economically attractive technology that uses plants to remove chemical contaminants from soil and groundwater.A major munitions contaminant,TNT(2,4,6-Trinitrotoluene)can be r... Phytoremediation is a viable,effective,and economically attractive technology that uses plants to remove chemical contaminants from soil and groundwater.A major munitions contaminant,TNT(2,4,6-Trinitrotoluene)can be remediated by several plants such as Myriophyllum aquaticum(Parrot Feather),and Catharanthus roseus.This study focuses on screening plants that have natural antioxidant phytochemicals for their ability to remediate TNT,and heavy metals from contaminated water sources,groundwater and soil.Three kinds of bell peppers,Capsicum frutescens(green,red,and yellow),which contain both the antioxidant phytochemicals(carotene and vitamin C)and tomato,which also contains vitamin C,were tested to confirm their antioxidizing and remediation abilities respectively.Results for remediation abilities were analyzed by HPLC(High Performance Liquid Chromatography).Results also suggested that plants which had antioxidant properties were also able to remediate TNT and heavy metals effectively,thereby suggesting a possible correlation between antioxidant and phytoremediation abilities of the plants studied. 展开更多
关键词 PHYTOREMEDIATION ANTIOXIDATION heavy metal remediation TNT remediation.
在线阅读 下载PDF
Compatible Remediation for Vulnerabilities in the Presence and Absence of Security Patches
3
作者 Xiaohu Song Zhiliang Zhu 《Computers, Materials & Continua》 2026年第1期297-315,共19页
Vulnerabilities are a known problem in modern Open Source Software(OSS).Most developers often rely on third-party libraries to accelerate feature implementation.However,these libraries may contain vulnerabilities that... Vulnerabilities are a known problem in modern Open Source Software(OSS).Most developers often rely on third-party libraries to accelerate feature implementation.However,these libraries may contain vulnerabilities that attackers can exploit to propagate malicious code,posing security risks to dependent projects.Existing research addresses these challenges through Software Composition Analysis(SCA)for vulnerability detection and remediation.Nevertheless,current solutions may introduce additional issues,such as incompatibilities,dependency conflicts,and additional vulnerabilities.To address this,we propose Vulnerability Scan and Protection(VulnScanPro),a robust solution for detection and remediation vulnerabilities in Java projects.Specifically,VulnScanPro builds a finegrained method graph to identify unreachable methods.The method graph is mapped to the project’s dependency tree,constructing a comprehensive vulnerability propagation graph that identifies unreachable vulnerable APIs and dependencies.Based on this analysis,we propose three solutions for vulnerability remediation:(1)Removing unreachable vulnerable dependencies,thereby resolving security risks and reducing maintenance overhead.(2)Upgrading vulnerable dependencies to the closest non-vulnerable versions,while pinning the versions of transitive dependencies introduced by the vulnerable dependency,in order to mitigate compatibility issues and prevent the introduction of new vulnerabilities.(3)Eliminating unreachable vulnerable APIs,particularly when security patches are either incompatible or absent.Experimental results show that these solutions effectively mitigate vulnerabilities and enhance the overall security of the project. 展开更多
关键词 Open source software vulnerability detection vulnerability remediation software composition analysis software vulnerability
在线阅读 下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation 被引量:1
4
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
在线阅读 下载PDF
Research progress on the environmental risk assessment and remediation technologies of heavy metal pollution in agricultural soil 被引量:8
5
作者 Xurui Mai Jing Tang +6 位作者 Juexuan Tang Xinyue Zhu Zhenhao Yang Xi Liu Xiaojie Zhuang Guang Feng Lin Tang 《Journal of Environmental Sciences》 2025年第3期1-20,共20页
Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remedi... Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals. 展开更多
关键词 Source Migration transformation Risk assessment REMEDIATION Heavy metals Agricultural soils
原文传递
Remediation mechanism of high concentrations of multiple heavy metals in contaminated soil by Sedum alfredii and native microorganisms 被引量:3
6
作者 Zihe Wang Han Zhang +5 位作者 Ying Xiong Lieyu Zhang Jianglong Cui Guowen Li Caili Du Kaiyang Wen 《Journal of Environmental Sciences》 2025年第1期179-188,共10页
Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil.Phytoremediation of contaminated soil is an environmental and sustainable technology,and soil na... Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil.Phytoremediation of contaminated soil is an environmental and sustainable technology,and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals.However,the effects of high concentrations of multiple heavy metals(HCMHMs)on plants and native soil microorganisms remain uncertain.Thus,further clarification of themechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required.Using the plant Sedum alfredii(S.alfredii)to restore HCMHM-contaminated soil,we further explored the mechanism of S.alfredii and native soil microorganisms in the remediation of HCMHM soils.The results showed that(i)S.alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil,which is conducive to the effect of plants on heavy metals.In addition,it can also enrich the absorbed heavy metals in its roots and leaves;(ii)native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes,such as trpE,trpG,bjaI,rpfF,ACSL,and yidC,and promote the expression of the pathway that converts serine to cysteine,then synthesize substances to chelate heavy metals.In addition,we speculated that genes such as K19703,K07891,K09711,K19703,K07891,and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals.The results provide scientific basis for S.alfredii to remediate heavy metals contaminated soils,and confirm the potential of phytoremediation of HCMHM contaminated soil. 展开更多
关键词 Microbial remediation PHYTOREMEDIATION Sedum alfredii
原文传递
Remediation of trichloromethane-contaminated soil and groundwater using microorganisms and iron-based materials:A review 被引量:1
7
作者 Hongtao SHENG Zhenyu KANG +5 位作者 Zhen NI Hangyu LI Yuqing WANG Mengfang CHEN Jianjun CAO Linbo QIAN 《Pedosphere》 2025年第1期137-150,共14页
New pollutants have become a significant concern in China's efforts toward ecological and environmental protection.Trichloromethane(TCM,CHCl_3),one of these new pollutants,is primarily released into soil and groun... New pollutants have become a significant concern in China's efforts toward ecological and environmental protection.Trichloromethane(TCM,CHCl_3),one of these new pollutants,is primarily released into soil and groundwater through various industrial activities.Over the past four decades,researchers have consistently focused on the remediation of TCM-contaminated soil and groundwater using microorganisms and iron-based materials,which hold significant potential for practical application.Understanding the remediation process and the factors influencing TCM degradation through these two methods is crucial for advancing both theoretical research and practical implementation.This review focuses on the degradation mechanisms of TCM in soil and groundwater by microorganisms and iron-based materials.It summarizes the active microorganisms and modified iron-based materials with high TCM degradation capabilities,discusses enhancement measures for both methods in the remediation process,and finally,outlines the challenges faced by these methods.The goal is to provide theoretical references for efficient remediation of TCM-contaminated soil and groundwater. 展开更多
关键词 challenges environmental behavior media remediation mechanisms remediation methods subsurface environments volatile organic compounds
原文传递
Antibiotics-heavy metals combined pollution in agricultural soils:Sources,fate,risks,and countermeasures 被引量:1
8
作者 Yuanxiang Shu Donghao Li +3 位作者 Tong Xie Ke Zhao Lu Zhou Fengxiang Li 《Green Energy & Environment》 2025年第5期869-897,共29页
Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to induci... Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to inducing antibiotic-HMs combined pollution.Recently,frequent human activities have led to more prominent antibiotics-HMs combined contamination in agricultural soils,especially the production and spread of antibiotic resistance genes(ARGs),heavy metal resistance genes(MRGs),antibiotic resistant bacteria(ARB),and antibiotics-HMs complexes(AMCs),which seriously threaten soil ecology and human health.This review describes the main sources(Intrinsic and manmade sources),composite mechanisms(co-selective resistance,oxidative stress,and Joint toxicity mechanism),environmental fate and the potential risks(soil ecological and human health risks)of antibiotics and HMs in agricultural soils.Finally,the current effective source blocking,transmission control,and attenuation strategies are classified for discussion,such as the application of additives and barrier materials,as well as plant and animal remediation and bioremediation,etc.,pointing out that future research should focus on the whole chain process of“source-processterminal”,intending to provide a theoretical basis and decision-making reference for future research. 展开更多
关键词 ANTIBIOTICS Heavy metals Agricultural soils Composite mechanisms Potential risks Soil remediation
在线阅读 下载PDF
Plant-substrate biochar properties critical for mediating reductive debromination of 1,2-dibromoethane 被引量:1
9
作者 Jonathan H.Lindhardt Peter E.Holm +2 位作者 Yong-Guan Zhu Changyong Lu Hans Christian B.Hansen 《Journal of Environmental Sciences》 2025年第1期1-10,共10页
Dibromoethane is a widespread,persistent organic pollutant.Biochars are known mediators of reductive dehalogenation by layered Fe^(Ⅱ)-Fe^(Ⅲ)hydroxides(green rust),which can reduce 1,2-dibromoethane to innocuous brom... Dibromoethane is a widespread,persistent organic pollutant.Biochars are known mediators of reductive dehalogenation by layered Fe^(Ⅱ)-Fe^(Ⅲ)hydroxides(green rust),which can reduce 1,2-dibromoethane to innocuous bromide and ethylene.However,the critical characteristics that determine mediator functionality are lesser known.Fifteen biochar substrates were pyrolyzed at 600℃and 800℃,characterized by elemental analysis,X-ray photo spectrometry C and N surface speciation,X-ray powder diffraction,specific surface area analysis,and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions.A statistical analysis was performed to determine the biochar properties,critical for debromination kinetics and total debromination extent.It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane,that the highest first order rate constant was 0.082/hr,and the highest debromination extent was 27%in reactivity experiments with 0.1μmol(20μmol/L)1,2-dibromoethane,≈22 mmol/L Fe^(Ⅱ)GR,and 0.12 g/L soybean meal biochar(7 days).Contents of Ni,Zn,N,and P,and the relative contribution of quinone surface functional groups were significantly(p<0.05)positively correlated with 1,2-dibromoethane debromination,while adsorption,specific surface area,and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination. 展开更多
关键词 Environmental remediation BIOCHAR Persistent organic pollutants(POPs) Environmental catalysis Green rust
原文传递
Remediation of a Pb and Cd-contaminated clayey soil via magnetic-enhanced washing
10
作者 Dahu RUI Yuru WANG +5 位作者 Wenjun NIE Mintae KIM Jun ZHANG Shuren WANG Yuzuru ITO Fujun NIU 《Pedosphere》 2025年第3期526-533,共8页
The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the phy... The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the physicochemical properties of ethylene diamine tetraacetic acid(EDTA)solutions for the removal of lead(Pb)and cadmium(Cd)from a contaminated clayey soil.Furthermore,EDTA concentration,magnetization strength,and magnetization time were varied as parameters for enhancing the contact between contaminant and washing solution to improve remediation efficiency.The results showed that after magnetization,the viscosities,surface tensions,and contact angles of EDTA solutions decreased,whereas the electrical conductivity and pH increased.In particular,the viscosities of high-concentration EDTA solutions increased with increasing magnetic field strength and magnetization time.The magnetized EDTA solutions increased the maximum removal rates of Cd and Pb by 64.46% and 35.49%,respectively,compared to the unmagnetized EDTA solutions.The results highlighted the efficient metal removal by magnetized washing solutions due to the better contact between the washing solutions and the contaminants.The magnetic-enhanced soil washing method was proven to be efficient,cost-effective,and easily implementable for enhancing heavy metal removal.This study provides a valuable reference for improving the efficiency of chemical washing for heavy metal-contaminated clayey soils. 展开更多
关键词 chemical washing contact angle heavy metal remediation efficiency soil remediation surface tension VISCOSITY WETTABILITY
原文传递
Biogeochemical mechanisms of zero-valent iron and biochar for synergistically mitigating antimony uptake in rice
11
作者 Xiaofeng Zhang Jialin Chi +7 位作者 Huanyun Yu Liping Fang Tongxu Liu Yanhong Du Chuanping Liu Xiangqin Wang Qian Xu Fangbai Li 《Journal of Environmental Sciences》 2025年第7期76-86,共11页
Antimony(Sb)contamination in paddy fields can lead to its accumulation in rice grains,posing a threat to food safety.To address this issue,the combined use of zero-valent iron(ZVI)and biochar(BC)were applied to decrea... Antimony(Sb)contamination in paddy fields can lead to its accumulation in rice grains,posing a threat to food safety.To address this issue,the combined use of zero-valent iron(ZVI)and biochar(BC)were applied to decrease the uptake of Sb in Sb-polluted soils,and their effects on Sb uptake from soil to rice grains were investigated.Our results showed that the combination treatment of 0.05%ZVI and 0.095%BC resulted in a significant decrease(42.8%)in Sb accumulation in rice grains that was comparably more efficient than that by 0.05%ZVI(decrease of 15.8%Sb accumulation)or 0.095%BC(decrease of 12.7%Sb accumulation)alone,demonstrating the synergistic effect of ZVI and BC on mitigating Sb uptake by rice plants.ZVI presence resulted in the formation of iron oxides in the soil and on root surfaces,and the S^(2-)/S_(2)^(2-)ascent also increased by 58.7%on day 75 compared with that of the control,facilitating the reduction of Sb(Ⅴ)to less mobile Sb(Ⅲ),thereby decreasing Sb accumulation in rice plants.BC initially increased themobility of Sb owing to its alkaline nature,whereas the electron shuttle properties of BC contributed to a decrease in Sbmobility.The abundance of the arsenite-reducing gene arrA ultimately increased by 203.2% on day 120 compared with the initial phase on day 5,and BC caused a remarkable increase in arrA gene abundance.This study revealed the synergistic mechanisms by combining ZVI and BC to mitigate Sb uptake by rice,which may be useful for the sustainable remediation of contaminated rice paddies. 展开更多
关键词 ANTIMONY Zero-valent iron BIOCHAR Synergistic remediation Soil-rice system
原文传递
Photothermal-driven enhancing photocatalysis and photoelectrocatalysis:Advances and perspectives
12
作者 Wenfeng Li Guocheng Lv +5 位作者 Meng Liu Fanyue Zhao Pengfei Shuai Yanmei Feng Daimei Chen Libing Liao 《Journal of Energy Chemistry》 2025年第9期332-360,I0010,共30页
Photocatalysis(PC)and photoelectrocatalysis(PEC)represent promising and efficient avenues for harnessing solar energy to produce sustainable clean energy products and environmental remediation.Yet the current reaction... Photocatalysis(PC)and photoelectrocatalysis(PEC)represent promising and efficient avenues for harnessing solar energy to produce sustainable clean energy products and environmental remediation.Yet the current reaction efficiencies remain inadequate,limiting their efficiencies for practice.Despite the growing interest in photo thermal-driven PC/PEC systems,there is no comprehensive review that systematically summarises the role of the photothermal effect in bridging the gap between PC and PEC efficiencies.This review initially introduces the fundamental principles of PC and PEC,alongside the primary photothermal materials and relevant conversion mechanisms.Subsequently,the key influences of photothermal effects on PC and PEC performance(e.g.,light absorption,charge separation and transport,and surface reactions)and optimization strategies are discussed.In addition,the latest advancements in solar photothermal conversion are discussed,mainly focused on the widely application of different types of photothermal drive PC and PEC applications,such as PC and PEC oxygen evolution reaction(OER),hydrogen evolution reaction(HER),CO_(2)reduction reaction(CO_(2)RR),pollutant degradation,and sterilization,serving to illustrate the widespread applicability of the photothermal conversion.Finally,the development prospects and challenges of photothermal-assisted PC and PEC are discussed from the perspective of basic research and practical application.This work provides a timely and systematic framework to guide the rational design of photothermal-enhanced PC/PEC systems for sustainable energy and environmental applications. 展开更多
关键词 Photothermal effects PHOTOCATALYSIS PHOTOELECTROCATALYSIS Energy conversion Environmental remediation
在线阅读 下载PDF
Biochar,Properties and Skills with a Focus on Implications for Vineyard Land and Grapevine Performance
13
作者 Pamela Lippi Giovan Battista Mattii Eleonora Cataldo 《Phyton-International Journal of Experimental Botany》 2025年第1期33-64,共32页
Biochar has emerged as a promising tool for enhancing vineyard sustainability by improving soil properties and mitigating climate change impacts.This review highlights key findings on biochar’s role in viticulture,fo... Biochar has emerged as a promising tool for enhancing vineyard sustainability by improving soil properties and mitigating climate change impacts.This review highlights key findings on biochar’s role in viticulture,focusing on its effects on soil fertility,water retention,and plant physiology.Field and pot studies demonstrate that biochar amendments enhance soil structure,increase cation exchange capacity(CEC),and promote water availability,leading to improved drought resistance in grapevines.However,the impacts on grape yield,physiology,and quality remain inconclusive,with some studies reporting benefits while others show neutral effects.Future research should focus on optimizing biochar application rates,understanding its interactions with soil microbiota,and assessing long-term impacts on grape production and wine quality.Additionally,addressing potential risks,such as heavy metal contamination and changes in microbial communities,is crucial for its safe and effective use.This review aims to supply a comprehensive assessment of our knowledge about the incidence and consequences of biochar on soil,including its potential use in soil remediation and concerns regarding its possible negative impacts,with a focus on its effects on vine physiology and grape production. 展开更多
关键词 C sequestration charcoal climate change PYROLYSIS soil amendment soil remediation
在线阅读 下载PDF
Hybrid and enhanced electrokinetic system for soil remediation from heavy metals and organic matter
14
作者 Faris M.Hamdi Namuun Ganbat +4 位作者 Ali Altaee Akshaya K.Samal Ibrar Ibrar John L.Zhou Adel O.Sharif 《Journal of Environmental Sciences》 2025年第1期424-450,共27页
The electrokinetic(EK)process has been proposed for soil decontamination from heavy metals and organic matter.The advantages of the EK process include the low operating energy,suitability for fine-grained soil deconta... The electrokinetic(EK)process has been proposed for soil decontamination from heavy metals and organic matter.The advantages of the EK process include the low operating energy,suitability for fine-grained soil decontamination,and no need for excavation.During the last three decades,enhanced and hybrid EK systems were developed and tested for improving the efficiency of contaminants removal from soils.Chemically enhanced-EK processes exhibited excellent efficiency in removing contaminants by controlling the soil pH or the chemical reaction of contaminants.EK hybrid systems were tested to overcome environmental hurdles or technical drawbacks of decontamination technologies.Hybridization of the EK process with phytoremediation,bioremediation,or reactive filtermedia(RFM)improved the remediation process performance by capturing contaminants or facilitating biological agents’movement in the soil.Also,EK process coupling with solar energy was proposed to treat off-grid contaminated soils or reduce the EK energy requirements.This study reviews recent advancements in the enhancement and hybrid EK systems for soil remediation and the type of contaminants targeted by the process.The study also covered the impact of operating parameters,imperfect pollution separation,and differences in the physicochemical characteristics and microstructure of soil/sediment on the EK performance.Finally,a comparison between various remediation processes was presented to highlight the pros and cons of these technologies. 展开更多
关键词 ELECTROKINETIC Soil remediation Reactive filter media Enhanced electrokinetic CONTAMINANTS
原文传递
Activation of persulfate using a biochar polyacrylic acid composite loaded with nanoscale zero-valent iron for the in situ remediation of anthracene-contaminated soil
15
作者 Fengjun Li Dongyun Chen +4 位作者 Shihong Dong Najun Li Qingfeng Xu Hua Li Jianmei Lu 《Green Energy & Environment》 2025年第8期1764-1776,共13页
Synthesizing highly efficient,low-toxicity catalysts for the remediation of polycyclic aromatic hydrocarbons(PAHs)contaminated soils is crucial.Nanoscale zero-valent iron(n-ZVI)is widely used in the treatment of pollut... Synthesizing highly efficient,low-toxicity catalysts for the remediation of polycyclic aromatic hydrocarbons(PAHs)contaminated soils is crucial.Nanoscale zero-valent iron(n-ZVI)is widely used in the treatment of pollutants due to its high catalytic activity.However,n-ZVI is prone to aggregation and passivation.Therefore,to design an environmentally friendly,efficient,and practical catalyst material,this study designed a nanoscale zero-valent iron-loaded biochar(BC)polyacrylic acid(PAA)composite materials.Biochar and polyacrylic acid can prevent the ag-gregation of zero-valent iron and provide a large number of functional groups.The iron on the carrier is uniformly distributed,exposing active sites and activating persulfate to remove anthracene(ANT)pollutants from the soil.The BC/PAA/Fe0 system can achieve an anthracene degradation efficiency of 93.7%in soil,and the degradation efficiency of anthracene remains around 90%under both acidic and alkaline con-$$ditions.Free radical capture experiments indicate that the degradation of anthracene proceeds through the radical pathways SO4,$OH,O2 and the non-radical pathway 1O2.In addition,possible degradation pathways for anthracene have been proposed.Plant planting experiments have shown that the catalyst designed in this study has low toxicity and has excellent application prospects in thefield of soil remediation. 展开更多
关键词 Soil remediation Anthracene FENTON-LIKE Radical pathway Non-radical pathway
在线阅读 下载PDF
Understanding the effect of heterogeneity on amendment delivery in fractured low-permeability soils
16
作者 Mengwen Gao He Chen +2 位作者 Shijin Feng Qiteng Zheng Hongxin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5188-5205,共18页
Due to severe mass transfer limitations,the remediation efficiency of low-permeability contaminated sites often fails to meet expectations.Hydraulic fracturing technology has been utilized to enhance amendment deliver... Due to severe mass transfer limitations,the remediation efficiency of low-permeability contaminated sites often fails to meet expectations.Hydraulic fracturing technology has been utilized to enhance amendment delivery,but the influence of soil heterogeneity is commonly overlooked.To address this issue,this study develops a numerical model to simulate the enhanced transport of amendments,incorporating convection,diffusion,adsorption,and degradation processes.Within the model,random permeability fields are generated based on geostatistical methods to explore how soil heterogeneity affects amendment injection efficiency,distribution characteristics,and the underlying physical mechanisms.The results indicate that(1)soil heterogeneity significantly reduces the amendment injection efficiency,with stronger heterogeneity correlating to lower efficiency,(2)soil heterogeneity markedly alters the amendment distribution characteristics,leading to the formation of localized“nodes”,(3)the mechanism by which heterogeneity reduces injection efficiency involves decreasing the density of preferential flow paths in the soil,and(4)the adverse effects of heterogeneity can be mitigated by employing pressure compensation or adjusting well spacing. 展开更多
关键词 HETEROGENEITY Low-permeability soil Hydraulic fracturing Fracture-matrix system REMEDIATION
在线阅读 下载PDF
Combination of electrochemical advanced oxidation and biotreatment for wastewater treatment and soil remediation
17
作者 Wenqing Zeng Bin Yao +2 位作者 Yaoyu Zhou Jian Yang Dan Zhi 《Journal of Environmental Sciences》 2025年第4期36-53,共18页
The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time.While electrochemical advanced oxidation processes(EAOPs)and biotreatments are commo... The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time.While electrochemical advanced oxidation processes(EAOPs)and biotreatments are commonly employed technologies for remediating wastewater and polluted soil,their widespread adoption is hindered by their limitations,which include high costs associated with EAOPs and prolonged remediation time of biotreatments.In the review,we provided an overviewof EAOP technology and biotreatment,emphasizing the critical aspects involved in building a combined system.This review systematically evaluates recent research that combines EAOPswith bioremediation for treating wastewater or contaminated soil as pretreatment or post-treatment process.Research findings suggest that the combined treatment method represents a promising and competitive technology that can overcome some of the limitations of individual treatments.Additionally,we discussed the potential applications of this technology in varying levels of wastewater and soil pollution,as well as the underlying combination mechanisms. 展开更多
关键词 Electrochemical advanced oxidation BIOTREATMENT WASTEWATER Contaminated soil REMEDIATION
原文传递
Corrigendum to“Fluoride contamination in groundwater:A global review of the status,processes,challenges,and remedial measures”[Geosci.Front.15(2)(2024)101734]
18
作者 E.Shaji K.V.Sarath +3 位作者 M.Santosh P.K.Krishnaprasad B.K.Arya Manisha S.Babu 《Geoscience Frontiers》 2025年第3期447-447,共1页
In the published version of our article(Shaji et al.,2024),in the last paragraph of the article,Hong Kong should be corrected to Hong Kong(China)and the repetition of Spain and Ireland in the same sentence need to be ... In the published version of our article(Shaji et al.,2024),in the last paragraph of the article,Hong Kong should be corrected to Hong Kong(China)and the repetition of Spain and Ireland in the same sentence need to be deleted.The correct sentence is as below. 展开更多
关键词 PROCESSES correct sentence fluoride contamination remedial measures STATUS global review spain ireland CHALLENGES
在线阅读 下载PDF
Sustainable remediation of cadmium-contaminated soils: Capture by Fe_(3)O_(4)/polyaniline nanocomposites and removal by magnetic separation
19
作者 Xiaochen CHEN Fuxiang ZHANG +9 位作者 Yijia HUANG Qian GUAN Jianying YU Jianyu ZHANG Ao WANG Yu LIU Xiaoyu CUI Xianhua LIU Junyu ZHU Jie CHEN 《Pedosphere》 2025年第5期809-819,共11页
Cadmium(Cd)contamination of soil is a global environmental issue.Traditional remediation techniques such as immobilization,leaching,and phytoextraction have numerous shortcomings,which has led to growing interest in t... Cadmium(Cd)contamination of soil is a global environmental issue.Traditional remediation techniques such as immobilization,leaching,and phytoextraction have numerous shortcomings,which has led to growing interest in the development of low-cost,high-efficiency,and environmentally friendly agents for removing Cd from soil.In this study,four magnetite(Fe_(3)O_(4))/polyaniline(PANI)nanocomposites,Fe_(3)O_(4)(1.0)/PANI,Fe_(3)O_(4)(1.5)/PANI,Fe_(3)O_(4)(2.0)/PANI,and Fe_(3)O_(4)(2.5)/PANI,were developed using 4 mL aniline monomer and 1.0,1.5,2.0,and 2.5 g Fe_(3)O_(4),respectively,and used as remediation agents with magnetic separation and regeneration capabilities.The Cd adsorption isotherms showed a better fit to the Langmuir model,with Fe_(3)O_(4)(1.5)/PANI exhibiting the highest Cd adsorption capacity of 47.62 mg g^(-1) at 25℃.Then,Fe_(3)O_(4)(1.5)/PANI was used to remediate four Cd-contaminated soils typical in China(black,brown,cinnamon,and red),all with a Cd content of 180 mg kg^(-1) after spiking.The results showed that the total Cd removal efficiency was satisfactory at 25.25%–38.91%and the exchangeable Cd removal efficiency was 36.03%on average.In addition,soil basic properties did not show significant changes after remediation.Regarding the regeneration performance,a higher total Cd removal efficiency(27.89%–44.96%)was achieved after the first regeneration cycle of Fe_(3)O_(4)(1.5)/PANI.After two regeneration cycles,Fe_(3)O_(4)(1.5)/PANI exhibited decreased total Cd removal efficiency compared to after the first regeneration,but its efficiency remained above 95%of or higher than those of virgin Fe_(3)O_(4)(1.5)/PANI.The synthetic process of Fe_(3)O_(4)/PANI was simple and cost-effective,and Fe_(3)O_(4)/PANI exhibited a high Cd removal efficiency with easy recovery and recyclability.Therefore,Fe_(3)O_(4)/PANI is a promising solution for the sustainable and efficient remediation of Cd-contaminated soils,especially for the reclamation of highly contaminated development land. 展开更多
关键词 adsorption isotherm heavy metal pollution MAGNETITE nanocomposite recyclability nanoparticle regeneration soil contamination soil remediation
原文传递
Effectiveness of various chemical leaching systems in the remediation of chromium-contaminated soil and their impact on chromium speciation
20
作者 Yuxiao Jiang Chao Hu +3 位作者 Aoyu Zhou Huiyang Qiu Benyi Cao Jian Xu 《Journal of Environmental Sciences》 2025年第11期77-89,共13页
Chemical leaching techniques have been proven effective in removing heavymetal contaminants fromsoil using various leaching agents.Previous research has shown that both singleagent and composite leaching systems have ... Chemical leaching techniques have been proven effective in removing heavymetal contaminants fromsoil using various leaching agents.Previous research has shown that both singleagent and composite leaching systems have been applied for the remediation of chromiumcontaminated soils,with varying degrees of success depending on soil type and contaminant form.However,the removal rate of total chromium(Cr)and hexavalent chromium(Cr(Ⅵ))often fluctuates based on the chemical composition of the leaching agents,as well as the soil’s physicochemical properties,such as pH and Cr speciation stability.Therefore,this study investigates the effectiveness of 20 composite leaching systems,including deionized water,lime water,calcium chloride,sodium carbonate,and sodium phosphate,through soil column leaching tests.The aim was to evaluate their impact on soil pH,total Cr,and Cr(Ⅵ)removal,and to examine the transformation of various Cr species during the leaching process.Results reveal that lime water and sodium phosphate were particularly effective in stabilizing Cr(Ⅵ)and neutralizing soil pH,while total Cr removal amount ranged from 197.4 mg/kg to 1671.6 mg/kg and Cr(Ⅵ)removal amount ranged from 113.2mg/kg to 316.8mg/kg.We also find that using 0.2 mol/L citric acid,0.1 mol/L hydrochloric acid,and 1.2 mL/g lime solution adjusted soil pH to 7.37,with average removal efficiencies of 34.6%.for total Cr and 72.7%for Cr(Ⅵ).Overall,our results suggest that the combined use of lime water and sodium phosphate is an effective strategy for remediating chromium-contaminated soil,particularly for stabilizing unleached Cr and adjusting soil pH. 展开更多
关键词 Chemical leaching techniques Metal contaminants REMEDIATION Removal rate Total chromium Leaching systems
原文传递
上一页 1 2 34 下一页 到第
使用帮助 返回顶部