A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapp...A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.展开更多
The ERA-Interim reanalysis wind based on the distance-weighted average remapping for studying the wind circulation in Nigeria is presented. The wind flow using this atmospheric model simulation is studied for identifi...The ERA-Interim reanalysis wind based on the distance-weighted average remapping for studying the wind circulation in Nigeria is presented. The wind flow using this atmospheric model simulation is studied for identification of grid-tie electrification opportunities in different wind locations. A 10-year reanalysis wind speed components at a surface level of the planetary layer at 0.25° × 0.25° spatial resolution is obtained and remapped into a new horizontal wind field at a grid resolution of 0.125° × 0.125° covering longitudinal and latitudinal directions of 3.0 - 15.0°E and 15.0 - 3.0°N, respectively. Using the distance-weighted average technique, the remapped wind field at a new grid resolution of 0.125° × 0.125° is compared at different terrain elevations and approximated close to the actual wind field of the same resolution. To determine the suitability of the prevailing wind for small-scale energy conversion, the magnitude of wind flow across the remapped wind field is studied for a 10-year period. Analysis shows that northern regions of Nigeria have a fair wind potential for a stand-alone application based on the wind flow originated at Gulf of Guinea as well as Chad and Niger. Furthermore, hourly surface wind speed observations from 18 synoptic stations in Nigeria are obtained and compared with the bilinear interpolated wind stations. The reanalysis wind reflects the surface wind observations and proves that the prevailing wind in Nigeria is higher than the reanalysis wind projection obtained from gridded data at resolution of 0.125° × 0.125°. The sectorwise wind directions at each synoptic stations for a period of 10 years are presented.展开更多
SRAM-based computing-in-memory(SRAM-CIM)is expected to solve the“Memory Wall”problem.For the digital domain SRAM-CIM,full-precision digital logic has been utilized to achieve high computational accuracy.However,the ...SRAM-based computing-in-memory(SRAM-CIM)is expected to solve the“Memory Wall”problem.For the digital domain SRAM-CIM,full-precision digital logic has been utilized to achieve high computational accuracy.However,the energy and area efficiency advantages of CIM cannot be fully utilized under error-resilient neural networks(NNs)with given quantization bit-width.Therefore,an all-digital Bit-wise Approximate compressor configurable In-SRAM-computing macro for Energy-efficient NN acceleration,with a data-aware weight Remapping method(BASER),is proposed in this paper.Leveraging the NN error resilience property,six energy-efficient bit-wise compressor configurations are presented under 4b/4b and 3b/3b NN quantization,respectively.Concurrently,a data-aware weight remapping approach is proposed to enhance the NN accuracy without supplementary retraining further.Evaluations of VGG-9 and ResNet-18 on CIFAR-10 and CIFAR-100 datasets show that the proposed BASER achieves 1.35x and 1.29x improvement in energy efficiency,as well as limited accuracy loss and improved NN accuracy,as compared to the previous full-precision and approximate SRAM-CIM design,respectively.展开更多
采用拉氏时间推进加重映到初始网格的方式,在结构化交错欧拉网格上实现一种新型两步欧拉法。拉氏时间推进采用预估-校正方法,混合网格的拉氏计算中引入压力松弛模型。用MOF(Moment of Fluid)重构显式界面,将混合网格剖分为多个介质多面...采用拉氏时间推进加重映到初始网格的方式,在结构化交错欧拉网格上实现一种新型两步欧拉法。拉氏时间推进采用预估-校正方法,混合网格的拉氏计算中引入压力松弛模型。用MOF(Moment of Fluid)重构显式界面,将混合网格剖分为多个介质多面体,实现了精确的相交重映。考虑到已有拉氏网格与拉氏网格相交算法的低效性,实现了与两步欧拉法更适配的拉氏网格与欧拉网格相交算法。数值模拟结果表明:在欧拉框架下构造显式界面,能够提高欧拉方法对界面的分辨能力,本文构造显式界面进行相交重映的算法具有健壮且高效的特点,在大变形模拟中也可以保持较好的完整性。展开更多
基金Project supported by the China Postdoctoral Science Foundation(No.2017M610823)
文摘A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.
文摘The ERA-Interim reanalysis wind based on the distance-weighted average remapping for studying the wind circulation in Nigeria is presented. The wind flow using this atmospheric model simulation is studied for identification of grid-tie electrification opportunities in different wind locations. A 10-year reanalysis wind speed components at a surface level of the planetary layer at 0.25° × 0.25° spatial resolution is obtained and remapped into a new horizontal wind field at a grid resolution of 0.125° × 0.125° covering longitudinal and latitudinal directions of 3.0 - 15.0°E and 15.0 - 3.0°N, respectively. Using the distance-weighted average technique, the remapped wind field at a new grid resolution of 0.125° × 0.125° is compared at different terrain elevations and approximated close to the actual wind field of the same resolution. To determine the suitability of the prevailing wind for small-scale energy conversion, the magnitude of wind flow across the remapped wind field is studied for a 10-year period. Analysis shows that northern regions of Nigeria have a fair wind potential for a stand-alone application based on the wind flow originated at Gulf of Guinea as well as Chad and Niger. Furthermore, hourly surface wind speed observations from 18 synoptic stations in Nigeria are obtained and compared with the bilinear interpolated wind stations. The reanalysis wind reflects the surface wind observations and proves that the prevailing wind in Nigeria is higher than the reanalysis wind projection obtained from gridded data at resolution of 0.125° × 0.125°. The sectorwise wind directions at each synoptic stations for a period of 10 years are presented.
基金supported in part by the National Key R&D Program of China under Grant 2023YFB450220in part by the National Natural Science Foundation of China under Grant 62174110 and Grant 62104025in part by the Natural Science Foundation of Shanghai under Grant 23ZR1433200.
文摘SRAM-based computing-in-memory(SRAM-CIM)is expected to solve the“Memory Wall”problem.For the digital domain SRAM-CIM,full-precision digital logic has been utilized to achieve high computational accuracy.However,the energy and area efficiency advantages of CIM cannot be fully utilized under error-resilient neural networks(NNs)with given quantization bit-width.Therefore,an all-digital Bit-wise Approximate compressor configurable In-SRAM-computing macro for Energy-efficient NN acceleration,with a data-aware weight Remapping method(BASER),is proposed in this paper.Leveraging the NN error resilience property,six energy-efficient bit-wise compressor configurations are presented under 4b/4b and 3b/3b NN quantization,respectively.Concurrently,a data-aware weight remapping approach is proposed to enhance the NN accuracy without supplementary retraining further.Evaluations of VGG-9 and ResNet-18 on CIFAR-10 and CIFAR-100 datasets show that the proposed BASER achieves 1.35x and 1.29x improvement in energy efficiency,as well as limited accuracy loss and improved NN accuracy,as compared to the previous full-precision and approximate SRAM-CIM design,respectively.
文摘采用拉氏时间推进加重映到初始网格的方式,在结构化交错欧拉网格上实现一种新型两步欧拉法。拉氏时间推进采用预估-校正方法,混合网格的拉氏计算中引入压力松弛模型。用MOF(Moment of Fluid)重构显式界面,将混合网格剖分为多个介质多面体,实现了精确的相交重映。考虑到已有拉氏网格与拉氏网格相交算法的低效性,实现了与两步欧拉法更适配的拉氏网格与欧拉网格相交算法。数值模拟结果表明:在欧拉框架下构造显式界面,能够提高欧拉方法对界面的分辨能力,本文构造显式界面进行相交重映的算法具有健壮且高效的特点,在大变形模拟中也可以保持较好的完整性。