In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field an...In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field and electromagnetic torque.Iteration method is used to solve the relative permeability of iron core.A novel reluctance network model based on actual distribution of the magnetic flux inside the motor is established.The magnetomotive force(MMF)generated by armature winding affects the relative permeability of iron core,which is considered in the calculation of ERNM to improve the accuracy when the motor is under load.ERNM can be used to measure air-gap flux density,no-load back electromotive force(EMF),the average value of motor torque,the armature winding voltage under load,and power factor.The method of calculating the motor performance is proposed.The results of calculation are consistent with finite element method(FEM)and the computational complexity is much less than that of the FEM.The results of ERNM has been verified,which will provide a simple method for motor design and analysis.展开更多
DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the D...DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.展开更多
In this paper,a new equivalent magnetic network(EMN)model is established for a spoke-type permanent magnet(PM)vernier(PMV)machine.Two different modeling methods are proposed for different parts of the PMV machine,cons...In this paper,a new equivalent magnetic network(EMN)model is established for a spoke-type permanent magnet(PM)vernier(PMV)machine.Two different modeling methods are proposed for different parts of the PMV machine,considering that their magnetic field distributions are quite different.Hierarchical modeling method is proposed for the modeling of the rotor as the magnetic intensity of the rotor iron core presents gradient distribution along the radial direction.Mesh based reluctance network method is used for the modeling of flux modulation poles with irregular and unstable magnetic field distributions.Moreover,accurate PM leakage permeance calculation formulae are deduced to improve the simulation precision.The electromagnetic parameters,such as flux linkage,back electromagnetic force,electromagnetic torque and iron loss are predicted by the proposed EMN model.Finally,finite element analysis(FEA)and experimental results are given to verify the effectiveness of the proposed methods.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51737008.
文摘In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field and electromagnetic torque.Iteration method is used to solve the relative permeability of iron core.A novel reluctance network model based on actual distribution of the magnetic flux inside the motor is established.The magnetomotive force(MMF)generated by armature winding affects the relative permeability of iron core,which is considered in the calculation of ERNM to improve the accuracy when the motor is under load.ERNM can be used to measure air-gap flux density,no-load back electromotive force(EMF),the average value of motor torque,the armature winding voltage under load,and power factor.The method of calculating the motor performance is proposed.The results of calculation are consistent with finite element method(FEM)and the computational complexity is much less than that of the FEM.The results of ERNM has been verified,which will provide a simple method for motor design and analysis.
文摘DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.
基金Supported by National Natural Science Foundation of China under Grant 51577084Key Project of Natural Science Foundation of Jiangsu Higher Education Institutions under Grant 15KJA470002the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘In this paper,a new equivalent magnetic network(EMN)model is established for a spoke-type permanent magnet(PM)vernier(PMV)machine.Two different modeling methods are proposed for different parts of the PMV machine,considering that their magnetic field distributions are quite different.Hierarchical modeling method is proposed for the modeling of the rotor as the magnetic intensity of the rotor iron core presents gradient distribution along the radial direction.Mesh based reluctance network method is used for the modeling of flux modulation poles with irregular and unstable magnetic field distributions.Moreover,accurate PM leakage permeance calculation formulae are deduced to improve the simulation precision.The electromagnetic parameters,such as flux linkage,back electromagnetic force,electromagnetic torque and iron loss are predicted by the proposed EMN model.Finally,finite element analysis(FEA)and experimental results are given to verify the effectiveness of the proposed methods.