期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Reliability-based life-cycle cost seismic design optimization of coastal bridge piers with nonuniform corrosion using different materials 被引量:2
1
作者 Wu Xiangtong Yuan Wenting Guo Anxin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期209-225,共17页
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun... Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design. 展开更多
关键词 reliability-based design optimization(rbdo) life-cycle cost(LCC) nonuniform corrosion coastal bridge pier REPAIR
在线阅读 下载PDF
Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures
2
作者 Xue-Qin Li Lu-Kai Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期665-684,共20页
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ... Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures. 展开更多
关键词 Random forest reliability-based design optimization ensemble learning machine learning
在线阅读 下载PDF
A Multiscale Reliability-Based Design Optimization Method for Carbon-Fiber-Reinforced Composite Drive Shafts
3
作者 Huile Zhang Shikang Li +3 位作者 Yurui Wu Pengpeng Zhi Wei Wang Zhonglai Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1975-1996,共22页
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta... Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components. 展开更多
关键词 Multiscale reliability-based design optimization carbon-fabric-reinforced composite drive shaft
在线阅读 下载PDF
An Efficient Reliability-Based Optimization Method Utilizing High-Dimensional Model Representation and Weight-Point Estimation Method 被引量:1
4
作者 Xiaoyi Wang Xinyue Chang +2 位作者 Wenxuan Wang Zijie Qiao Feng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1775-1796,共22页
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi... The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method. 展开更多
关键词 reliability-based design optimization high-dimensional model decomposition point estimation method Lagrange interpolation aviation hydraulic piping system
在线阅读 下载PDF
Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design 被引量:10
5
作者 Z.L.Huang Y.S.Zhou +2 位作者 C.Jiang J.Zheng X.Han 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期285-302,共18页
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici... Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method. 展开更多
关键词 reliability-based design optimization(rbdo) Multidisciplinary design optimization(MDO) Incremental shifting vector(ISV) Decoupling algorithm Electronic product
在线阅读 下载PDF
RELIABILITY-BASED DESIGN OF COMPOSITES UNDER THE MIXED UNCERTAINTIES AND THE OPTIMIZATION ALGORITHM 被引量:6
6
作者 Rui Ge Jianqiao Chen Junhong Wei 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第1期19-27,共9页
This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimizat... This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites. 展开更多
关键词 laminated composites inverse reliability analysis reliability-based design sequential single-loop optimization method PSO
在线阅读 下载PDF
NEW APPROACH FOR RELIABILITY-BASED DESIGN OPTIMIZATION:MINIMUM ERROR POINT 被引量:5
7
作者 LIU Deshun YUE Wenhui +1 位作者 ZHU Pingyu DU Xiaoping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期514-518,共5页
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th... Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions. 展开更多
关键词 Reliability Most probable point (MPP) Minimum error point (MEP)reliability-based design optimization rbdo
在线阅读 下载PDF
Reliability-based design optimization for flexible mechanism with particle swarm optimization and advanced extremum response surface method 被引量:1
8
作者 张春宜 宋鲁凯 +2 位作者 费成巍 郝广平 刘令君 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2001-2007,共7页
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr... To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well. 展开更多
关键词 reliability-based design optimization flexible robot manipulator artificial neural network particle swarm optimization advanced extremum response surface method
在线阅读 下载PDF
An Uncertainty Analysis and Reliability-Based Multidisciplinary Design Optimization Method Using Fourth-Moment Saddlepoint Approximation
9
作者 Yongqiang Guo Zhiyuan Lv 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1855-1870,共16页
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of... In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method. 展开更多
关键词 reliability-based multidisciplinary design optimization moment method saddlepoint approximate sequence optimization and reliability assessment performance measure approach
在线阅读 下载PDF
Quantile-based optimization under uncertainties for complex engineering structures using an active learning basis-adaptive PC-Kriging model
10
作者 Yulian GONG Jianguo ZHANG +1 位作者 Dan XU Ying HUANG 《Chinese Journal of Aeronautics》 2025年第1期340-352,共13页
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ... The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures. 展开更多
关键词 reliability-based design optimization Quantile-based Basis-adaptive PC-Kriging Complex engineering structures Active learning Uncertainty
原文传递
Fatigue Resistance in Engineering Components:A Comprehensive Review on the Role of Geometry and Its Optimization
11
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computer Modeling in Engineering & Sciences》 2025年第7期201-237,共37页
Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how str... Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how stress affects lifespan,this review offers the first comprehensive,multiscale comparison of strategies that optimize geometry to improve fatigue performance.This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets,notches,and overall structural layouts.We analyze and combine various methods,including topology and shape optimization,the ability of additive manufacturing to finetune internal geometries,and reliability-based design approaches.A key new contribution is our proposal of a standard way to evaluate geometry-focused fatigue design,allowing for consistent comparison and encouraging validation across different fields.Furthermore,we highlight important areas for future research,such as incorporating manufacturing flaws,using multiscale models,and integrating machine learning techniques.This work is the first to provide a broad geometric viewpoint in fatigue engineering,laying the groundwork for future design methods that are driven by data and centered on reliability. 展开更多
关键词 Fatigue resistance geometry optimization topology optimization microstructural geometry additive manufacturing crack initiation multiaxial fatigue reliability-based design raster orientation notch effect defect morphology fatigue life prediction
在线阅读 下载PDF
A Comparison of Deterministic, Reliability-Based Topology Optimization under Uncertainties 被引量:6
12
作者 Qinghai Zhao XiaokaiChen +1 位作者 Zhengdong Ma Yi Lin 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第1期31-45,共15页
Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncert... Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn. 展开更多
关键词 reliability-based design optimization topology optimization first-order reliabilitymethod (FORM) stochastic response surface method sparse grid method
原文传递
Reliability-Based Topology Optimization of Fail-Safe Structures Using Moving Morphable Bars 被引量:2
13
作者 Xuan Wang Yuankun Shi +3 位作者 Van-Nam Hoang Zeng Meng Kai Long Yuesheng Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3173-3195,共23页
This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between ... This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost and robustness,reliability and structural safety.To this end,a performancemeasure approach(PMA)-based doubleloop optimization algorithmis developed tominimize the relative volume percentage while achieving the reliability criterion.To ensure the compliance value of the worst failure case can better approximate the quantified design requirement,a p-norm constraint approach with correction parameter is introduced.Finally,the significance of accounting for uncertainty in the fail-safe design is illustrated by contrasting the findings of the proposed reliabilitybased topology optimization(RBTO)method with those of the deterministic design method in three typical examples.Monte Carlo simulation shows that the relative error of the reliability index of the optimized structure does not exceed 3%. 展开更多
关键词 Topology optimization fail-safe design uncertainty reliability-based topology optimization moving morphable bars
在线阅读 下载PDF
Reliability-Based Optimization:Small Sample Optimization Strategy
14
作者 Drahomir Novak Ondrej Slowik Maosen Cao 《Journal of Computer and Communications》 2014年第11期31-37,共7页
The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process o... The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process of reliability-based optimization and reliability constrains are calculated in inner loop. Innovation of suggested approach is in application of newly developed optimization strategy based on multilevel simulation using an advanced Latin Hypercube Sampling technique. This method is called Aimed multilevel sampling and it is designated for optimization of problems where only limited number of simulations is possible to perform due to enormous com- putational demands. 展开更多
关键词 optimization Reliability Assessment Aimed Multilevel Sampling Monte Carlo Latin Hypercube Sampling Probability of Failure reliability-based design optimization Small Sample Analysis
暂未订购
A decoupled method for time-dependent reliability-based design optimization
15
作者 Dequan ZHANG Meide YANG Xu HAN 《Science China(Technological Sciences)》 2025年第1期308-320,共13页
Time-dependent reliability-based design optimization(TRBDO)has received extensive attention because of its ability to achieve optimal solutions that help meet the requirement for whole lifecycle reliability by quantit... Time-dependent reliability-based design optimization(TRBDO)has received extensive attention because of its ability to achieve optimal solutions that help meet the requirement for whole lifecycle reliability by quantitatively considering dynamic uncertainties.However,directly solving TRBDO problems is computationally expensive,if not prohibitive,owing to the need to repeatedly evaluate time-dependent probabilistic constraints.To address this challenge,an efficient decoupled method called sequential optimization and time-dependent reliability assessment(SOTRA)is proposed in this study.This method transforms the original TRBDO problem,initially formulated probabilistically,into a problem using percentile formulation after discretizing time-dependent performance functions.By adopting the equivalent minimum performance target point(EMPTP)concept,the TRBDO problem is further converted into an equivalent deterministic optimization problem,which is subsequently solved through a sequential iteration process involving deterministic optimization and time-dependent reliability analysis.To efficiently and robustly search an EMPTP for reliability analysis,a time-dependent self-adaptive finite-step length method is developed.To verify the proposed SOTRA method against existing TRBDO methods,a numerical example,a benchmark structural design case of a simply supported beam,and an engineering application for flexible wheel design are exemplified in this study.The results demonstrate that the proposed SOTRA method exhibits high efficiency and robustness in solving TRBDO problems. 展开更多
关键词 reliability-based design optimization dynamic uncertainties time-dependent reliability analysis decoupled method sequential optimization and reliability analysis
原文传递
Optimization design of piles subjected to horizontal loads based on reliability theory
16
作者 赵文艺 徐志军 郑俊杰 《Journal of Central South University》 SCIE EI CAS 2014年第7期2928-2934,共7页
Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,varia... Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,variability of geotechnical materials from one location to another,and so on.It also deals with behavior and side constraints specified by standard specifications for piles.To more accurately solve the optimization design model,the first order reliability method is employed.The results from the numerical example indicate that the target reliability index has significant influence on design parameters.In addition,the optimization weight increases with the target reliability index.Especially when the target reliability index is relatively large,the target reliability index has significant influence on design weight of piles. 展开更多
关键词 reliability-based optimization design horizontal load objective function boundary condition first order reliability method
在线阅读 下载PDF
Transient reliability optimization for turbine disk radial deformation
17
作者 费成巍 白广忱 +2 位作者 唐文忠 蔡逸思 高海峰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期344-352,共9页
The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous opera... The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory. 展开更多
关键词 turbine disk radial deformation reliability-based transient design optimization extremum response surface method support vector machine regression
在线阅读 下载PDF
Structural reliability analysis and reliability-based design optimization: Recent advances 被引量:16
18
作者 QIU ZhiPing HUANG Ren +1 位作者 WANG XiaoJun QI WuChao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第9期1611-1618,共8页
We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation metho... We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation methods and reliability models,which are the basis of the reliability assessment,are given.In addition,recent developments on reliability evaluation and sensitivity analysis are highlighted as well as implementation strategies for RBDO. 展开更多
关键词 uncertainty propagation reliability assessment reliability-based design optimization hybrid reliability
原文传递
Reliability-based robust design optimization of vehicle components, Part Ⅱ: Case studies 被引量:4
19
作者 Yimin ZHANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2015年第2期145-153,共9页
The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle compo... The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle components in Part I. Applications of the method are further discussed for reliability-based robust optimization of vehicle components in this paper. Examples of axles, torsion bar, coil and composite springs are illustrated for numerical investigations. Results have shown the proposed method is an efficient method for reliability-based robust design optimization of vehicle components. 展开更多
关键词 vehicle axles and springs reliability-based design optimization reliability-based sensitivity analysis multi-objective optimization robust design
原文传递
Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate model 被引量:2
20
作者 Changhai YU Xiaolong LV +1 位作者 Dan HUANG Dongju JIANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第7期1086-1099,共14页
An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure a... An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure are established by considering stochastic variables.Subsequently,a surrogate model is constructed using a radial basis function(RBF)neural network to replace the time-consuming FEA.The uncertainties of loads,material properties,key sizes of structural components,and soil properties are considered.The uncertainty of soil properties is characterized by the variabilities of the unit weight,friction angle,and elastic modulus of soil.Structure reliability is determined via Monte Carlo simulation,and five limit states are considered,i.e.,structural stresses,tower top displacements,mudline rotation,buckling,and natural frequency.Based on the RBF surrogate model and particle swarm optimization algorithm,an optimal design is established to minimize the volume.Results show that the proposed method can yield an optimal design that satisfies the target reliability and that the constructed RBF surrogate model significantly improves the optimization efficiency.Furthermore,the uncertainty of soil parameters significantly affects the optimization results,and increasing the monopile diameter is a cost-effective approach to cope with the uncertainty of soil parameters. 展开更多
关键词 reliability-based design optimization offshore wind turbine parametric finite element analysis RBF surrogate model uncertain soil parameter
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部