Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ...Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.展开更多
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta...Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.展开更多
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th...Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr...Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.展开更多
Time-dependent reliability-based design optimization(TRBDO)has received extensive attention because of its ability to achieve optimal solutions that help meet the requirement for whole lifecycle reliability by quantit...Time-dependent reliability-based design optimization(TRBDO)has received extensive attention because of its ability to achieve optimal solutions that help meet the requirement for whole lifecycle reliability by quantitatively considering dynamic uncertainties.However,directly solving TRBDO problems is computationally expensive,if not prohibitive,owing to the need to repeatedly evaluate time-dependent probabilistic constraints.To address this challenge,an efficient decoupled method called sequential optimization and time-dependent reliability assessment(SOTRA)is proposed in this study.This method transforms the original TRBDO problem,initially formulated probabilistically,into a problem using percentile formulation after discretizing time-dependent performance functions.By adopting the equivalent minimum performance target point(EMPTP)concept,the TRBDO problem is further converted into an equivalent deterministic optimization problem,which is subsequently solved through a sequential iteration process involving deterministic optimization and time-dependent reliability analysis.To efficiently and robustly search an EMPTP for reliability analysis,a time-dependent self-adaptive finite-step length method is developed.To verify the proposed SOTRA method against existing TRBDO methods,a numerical example,a benchmark structural design case of a simply supported beam,and an engineering application for flexible wheel design are exemplified in this study.The results demonstrate that the proposed SOTRA method exhibits high efficiency and robustness in solving TRBDO problems.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p...In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.展开更多
The study presents the results of over 30,000 numerical analyses on the stability of lava tubes under lunar conditions.The research considered random irregularities in cave geometry and their impact on stability,with ...The study presents the results of over 30,000 numerical analyses on the stability of lava tubes under lunar conditions.The research considered random irregularities in cave geometry and their impact on stability,with a particular focus on the geometric characteristics of identified collapses.We propose a procedure for extracting the collapse areas and integrating it into the stability analysis results.The results were examined to assess the possibility of describing the geometry characteristics of collapses using commonly applied probability density distributions,such as normal or lognormal distribution.Our aim is to facilitate future risk assessment of lunar caves.Such an assessment will be essential prior to robotically exploring caves beneath the lunar surface and can be extended to be used for planetary caves beyond the Moon.Our findings indicate that several collapse characteristics can be represented by unimodal probability density distributions,which could significantly simplify the candidate selection process.Based on our results,we also highlight several key directions for future research and suggested implications related to their future exploration.展开更多
Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while...Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.展开更多
We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation metho...We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation methods and reliability models,which are the basis of the reliability assessment,are given.In addition,recent developments on reliability evaluation and sensitivity analysis are highlighted as well as implementation strategies for RBDO.展开更多
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
The application of Low Earth Orbit(LEO)satellite navigation can enhance geometric structure,increase observations and contribute to navigation and positioning.To improve the performance of the navigation constellation...The application of Low Earth Orbit(LEO)satellite navigation can enhance geometric structure,increase observations and contribute to navigation and positioning.To improve the performance of the navigation constellation in China,this study proposes an optimized method of LEO-enhanced navigation constellation for BDS based on Bayesian optimization algorithm.In this paper,four different optimal LEO constellation configurations are designed,and their enhancements to BDS3 navigation performance are analyzed,including Geometric Dilution of Precision(GDOP),the numbers of visible satellites,and the rapid convergence of precision point positioning(PPP).Additionally,the enhancement advantages in China compared to other regions are further discussed.The results demonstrate that regional enhanced constellations with 70,72,80,and 81 satellites at an altitude of 1000 km can significantly improve the navigation performance of the navigation constellation.Globally,the addition of optimized LEO constellations has reduced the hybrid constellation GDOP by 19.0%,18.3%,19.9%,and 20.3%.Similar results can be obtained using the genetic algorithm(GA),but the computational efficiency of Bayesian optimization algorithm is 53.9%higher than that of the genetic algorithm.The number of visible satellites of enhanced constellations in China has increased by more than four on average,which is better than that in other regions.In the PPP experiment,the convergence time of the stations in China and other regions is shortened by 83.0%and 76.2%,respectively,and the navigation performance of hybrid constellations in China is better.展开更多
Materials mechanics and structural dynamics provide theoretical support for the structural optimization of amusement facilities.The design code system guides the design process,covering aspects such as strength and fa...Materials mechanics and structural dynamics provide theoretical support for the structural optimization of amusement facilities.The design code system guides the design process,covering aspects such as strength and fatigue life.This paper introduces optimization methods like standardized module interfaces and variable density methods,as well as topics related to finite element simulation,reliability enhancement,innovative practices,and their significance.展开更多
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ...Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
This paper focuses on the construction organization design of office building projects.It elucidates its concept,core elements,and characteristics,highlighting the shortcomings of traditional designs.The paper introdu...This paper focuses on the construction organization design of office building projects.It elucidates its concept,core elements,and characteristics,highlighting the shortcomings of traditional designs.The paper introduces the improvement effects of technologies such as prefabricated curtain walls,the collaborative optimization role of BIM technology,and various optimization methods,including the establishment of work breakdown structures and the creation of progress deviation warning systems.It also touches on aspects like green construction and risk management.Finally,it emphasizes the significance of optimizing construction organization design,addresses research deficiencies,and looks forward to future research directions.展开更多
Advanced programmable metamaterials with heterogeneous microstructures have become increasingly prevalent in scientific and engineering disciplines attributed to their tunable properties.However,exploring the structur...Advanced programmable metamaterials with heterogeneous microstructures have become increasingly prevalent in scientific and engineering disciplines attributed to their tunable properties.However,exploring the structure-property relationship in these materials,including forward prediction and inverse design,presents substantial challenges.The inhomogeneous microstructures significantly complicate traditional analytical or simulation-based approaches.Here,we establish a novel framework that integrates the machine learning(ML)-encoded multiscale computational method for forward prediction and Bayesian optimization for inverse design.Unlike prior end-to-end ML methods limited to specific problems,our framework is both load-independent and geometry-independent.This means that a single training session for a constitutive model suffices to tackle various problems directly,eliminating the need for repeated data collection or training.We demonstrate the efficacy and efficiency of this framework using metamaterials with designable elliptical holes or lattice honeycombs microstructures.Leveraging accelerated forward prediction,we can precisely customize the stiffness and shape of metamaterials under diverse loading scenarios,and extend this capability to multi-objective customization seamlessly.Moreover,we achieve topology optimization for stress alleviation at the crack tip,resulting in a significant reduction of Mises stress by up to 41.2%and yielding a theoretical interpretable pattern.This framework offers a general,efficient and precise tool for analyzing the structure-property relationships of novel metamaterials.展开更多
Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic ...Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures.展开更多
Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overco...Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overcoming resistance in granular media when burrowing with forelimbs.In the absence of effective forepaw design strategies,most robotic designs rely on increased power to enhance performance.To address this issue,this paper employs Resistive Force Theory to optimize mole-inspired forepaws,aiming to enhance burrowing efficiency.By analyzing the relationship between geometric parameters and burrowing forces,we propose several forepaw design variations.Through granular resistance assessments,an effective forepaw configuration is identified and further refined using parameters such as longitudinal and transverse curvature.Subsequently,the Particle Swarm Optimization algorithm is applied to determine the optimal forepaw design.In force-loading tests,the optimized forepaw demonstrated a 79.44%reduction in granular lift force and a 22.55%increase in propulsive force compared with the control group.In robotic burrowing experiments,the optimized forepaw achieved the longest burrow displacement(179.528 mm)and the lowest burrowing lift force(0.9355 mm/s),verifying its effectiveness in reducing the lift force and enhancing the propulsive force.展开更多
基金supported by the National Natural Science Foundation of China under Grant(Number:52105136)the Hong Kong Scholar program under Grant(Number:XJ2022013)China Postdoctoral Science Foundation under Grant(Number:2021M690290)Academic Excellence Foundation of BUAA under Grant(Number:BY2004103).
文摘Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.
基金supported by the S&T Special Program of Huzhou(Grant No.2023GZ09)the Open Fund Project of the ShanghaiKey Laboratory of Lightweight Structural Composites(Grant No.2232021A4-06).
文摘Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.
基金This project is supported by National Natural Science Foundation of China(No.50575072)Outstanding Youth Fund of Hunan Education Department, China (No.04B007).
文摘Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
基金supported by Natural Science and Engineering Research Council (NSERC) of Canada
文摘Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.
基金supported by the National Science Foundation for Excellent Young Scholars(Grant No.52422507)the National Natural Science Foundation of China(Grant Nos.52305256,52275244)+1 种基金Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230661)China Postdoctoral Science Foundation(Grant Nos.2024T170211,2023M740970)。
文摘Time-dependent reliability-based design optimization(TRBDO)has received extensive attention because of its ability to achieve optimal solutions that help meet the requirement for whole lifecycle reliability by quantitatively considering dynamic uncertainties.However,directly solving TRBDO problems is computationally expensive,if not prohibitive,owing to the need to repeatedly evaluate time-dependent probabilistic constraints.To address this challenge,an efficient decoupled method called sequential optimization and time-dependent reliability assessment(SOTRA)is proposed in this study.This method transforms the original TRBDO problem,initially formulated probabilistically,into a problem using percentile formulation after discretizing time-dependent performance functions.By adopting the equivalent minimum performance target point(EMPTP)concept,the TRBDO problem is further converted into an equivalent deterministic optimization problem,which is subsequently solved through a sequential iteration process involving deterministic optimization and time-dependent reliability analysis.To efficiently and robustly search an EMPTP for reliability analysis,a time-dependent self-adaptive finite-step length method is developed.To verify the proposed SOTRA method against existing TRBDO methods,a numerical example,a benchmark structural design case of a simply supported beam,and an engineering application for flexible wheel design are exemplified in this study.The results demonstrate that the proposed SOTRA method exhibits high efficiency and robustness in solving TRBDO problems.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
文摘In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.
基金The work was performed based on the research project no.2023/51/D/ST10/01956,financed by the National Science Center,Poland.
文摘The study presents the results of over 30,000 numerical analyses on the stability of lava tubes under lunar conditions.The research considered random irregularities in cave geometry and their impact on stability,with a particular focus on the geometric characteristics of identified collapses.We propose a procedure for extracting the collapse areas and integrating it into the stability analysis results.The results were examined to assess the possibility of describing the geometry characteristics of collapses using commonly applied probability density distributions,such as normal or lognormal distribution.Our aim is to facilitate future risk assessment of lunar caves.Such an assessment will be essential prior to robotically exploring caves beneath the lunar surface and can be extended to be used for planetary caves beyond the Moon.Our findings indicate that several collapse characteristics can be represented by unimodal probability density distributions,which could significantly simplify the candidate selection process.Based on our results,we also highlight several key directions for future research and suggested implications related to their future exploration.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20242194)the National Natural Science Foundation of China(Grant Nos.52175251 and 52205268)+1 种基金the Industry Key Technology Research Fund Project of Northwestern Polytechnical University(Grant No.HYGJXM202318)the National Basic Scientific Research Program(Grant No.JCKY2021206B005).
文摘Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.
基金supported by the Defense Industrial Technology Development Program (Grant Nos.A2120110001 and B2120110011)111 Project (Grant No.B07009)the National Natural Science Foundation of China (Grant Nos.11002013,90816024 and 10876100)
文摘We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation methods and reliability models,which are the basis of the reliability assessment,are given.In addition,recent developments on reliability evaluation and sensitivity analysis are highlighted as well as implementation strategies for RBDO.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金founded by the National Natural Science Foundation of China(42030109)the Startup Foundation for Doctors of Liaoning Province(2021-BS-275)+4 种基金the Scientific Study Project for Institutes of Higher LearningMinistry of EducationLiaoning Province(LJKMZ20220673)the Project supported by the State Key Laboratory of Geodesy and Earths'DynamicsInnovation Academy for Precision Measurement Science and Technology(SKLGED2023-3-2)。
文摘The application of Low Earth Orbit(LEO)satellite navigation can enhance geometric structure,increase observations and contribute to navigation and positioning.To improve the performance of the navigation constellation in China,this study proposes an optimized method of LEO-enhanced navigation constellation for BDS based on Bayesian optimization algorithm.In this paper,four different optimal LEO constellation configurations are designed,and their enhancements to BDS3 navigation performance are analyzed,including Geometric Dilution of Precision(GDOP),the numbers of visible satellites,and the rapid convergence of precision point positioning(PPP).Additionally,the enhancement advantages in China compared to other regions are further discussed.The results demonstrate that regional enhanced constellations with 70,72,80,and 81 satellites at an altitude of 1000 km can significantly improve the navigation performance of the navigation constellation.Globally,the addition of optimized LEO constellations has reduced the hybrid constellation GDOP by 19.0%,18.3%,19.9%,and 20.3%.Similar results can be obtained using the genetic algorithm(GA),but the computational efficiency of Bayesian optimization algorithm is 53.9%higher than that of the genetic algorithm.The number of visible satellites of enhanced constellations in China has increased by more than four on average,which is better than that in other regions.In the PPP experiment,the convergence time of the stations in China and other regions is shortened by 83.0%and 76.2%,respectively,and the navigation performance of hybrid constellations in China is better.
文摘Materials mechanics and structural dynamics provide theoretical support for the structural optimization of amusement facilities.The design code system guides the design process,covering aspects such as strength and fatigue life.This paper introduces optimization methods like standardized module interfaces and variable density methods,as well as topics related to finite element simulation,reliability enhancement,innovative practices,and their significance.
基金National Natural Science Foundation of China (10377015)
文摘Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
文摘This paper focuses on the construction organization design of office building projects.It elucidates its concept,core elements,and characteristics,highlighting the shortcomings of traditional designs.The paper introduces the improvement effects of technologies such as prefabricated curtain walls,the collaborative optimization role of BIM technology,and various optimization methods,including the establishment of work breakdown structures and the creation of progress deviation warning systems.It also touches on aspects like green construction and risk management.Finally,it emphasizes the significance of optimizing construction organization design,addresses research deficiencies,and looks forward to future research directions.
基金supported by the National Natural Science Foundation of China (Grant Nos.12102021,12372105,12172026,and 12225201)the Fundamental Research Funds for the Central Universities and the Academic Excellence Foundation of BUAA for PhD Students.
文摘Advanced programmable metamaterials with heterogeneous microstructures have become increasingly prevalent in scientific and engineering disciplines attributed to their tunable properties.However,exploring the structure-property relationship in these materials,including forward prediction and inverse design,presents substantial challenges.The inhomogeneous microstructures significantly complicate traditional analytical or simulation-based approaches.Here,we establish a novel framework that integrates the machine learning(ML)-encoded multiscale computational method for forward prediction and Bayesian optimization for inverse design.Unlike prior end-to-end ML methods limited to specific problems,our framework is both load-independent and geometry-independent.This means that a single training session for a constitutive model suffices to tackle various problems directly,eliminating the need for repeated data collection or training.We demonstrate the efficacy and efficiency of this framework using metamaterials with designable elliptical holes or lattice honeycombs microstructures.Leveraging accelerated forward prediction,we can precisely customize the stiffness and shape of metamaterials under diverse loading scenarios,and extend this capability to multi-objective customization seamlessly.Moreover,we achieve topology optimization for stress alleviation at the crack tip,resulting in a significant reduction of Mises stress by up to 41.2%and yielding a theoretical interpretable pattern.This framework offers a general,efficient and precise tool for analyzing the structure-property relationships of novel metamaterials.
基金supported by the National Natural Science Foundation of China(No.52222501,52075016,52192632)the Fundamental Research Funds for the Central Universities(Grant No.YWF-23-L-904).
文摘Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures.
基金financially supported in-part by the National Natural Science Foundation of China(52275011)the Natural Science Foundation of Guangdong Province(2023B1515020080)+3 种基金the Natural Science Foundation of Guangzhou(2024A04J2552)the Fundamental Research Funds for the Central Universities,the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST)(2021QNRC001)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011253)the Higher Education Institution Featured Innovation Project of Department of Education of Guangdong Province(GrantNo.2023KTSCX138).
文摘Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overcoming resistance in granular media when burrowing with forelimbs.In the absence of effective forepaw design strategies,most robotic designs rely on increased power to enhance performance.To address this issue,this paper employs Resistive Force Theory to optimize mole-inspired forepaws,aiming to enhance burrowing efficiency.By analyzing the relationship between geometric parameters and burrowing forces,we propose several forepaw design variations.Through granular resistance assessments,an effective forepaw configuration is identified and further refined using parameters such as longitudinal and transverse curvature.Subsequently,the Particle Swarm Optimization algorithm is applied to determine the optimal forepaw design.In force-loading tests,the optimized forepaw demonstrated a 79.44%reduction in granular lift force and a 22.55%increase in propulsive force compared with the control group.In robotic burrowing experiments,the optimized forepaw achieved the longest burrow displacement(179.528 mm)and the lowest burrowing lift force(0.9355 mm/s),verifying its effectiveness in reducing the lift force and enhancing the propulsive force.