Oxopentanedioic acid isonicotinoyl hydrazone (H_2L) and its five rare earth complexes were synthesized with a view to further investigating MRI activities of the polycarboxylic Schiff base complexes. The complexes wer...Oxopentanedioic acid isonicotinoyl hydrazone (H_2L) and its five rare earth complexes were synthesized with a view to further investigating MRI activities of the polycarboxylic Schiff base complexes. The complexes were characterized on the basis of elemental analyses, IR, UV, (()~1H) NMR spectra and thermal analyses. The general formula of the complexes is [Ln(HL)(H_2O)_2]Cl_2·H_2O (where Ln(Ⅲ)=La, Pr, Nd, Eu and Gd). In addition, the relaxivity ( R _1) of the Gd-complex was determined by INVREC Au program.展开更多
Five neutral macromolecular polyester gadolinium (Ⅲ) complexes with pendant hydrophobic alkyland aromatic functional groups were prepared. The longitudinal relaxation rates of these complexes weremeasured. One of the...Five neutral macromolecular polyester gadolinium (Ⅲ) complexes with pendant hydrophobic alkyland aromatic functional groups were prepared. The longitudinal relaxation rates of these complexes weremeasured. One of these Gd (Ⅲ) complexes was chosen for the acute toxicity test and T_1-weighted imagingmeasurement. Preliminary results showed that. compared with Gd-DTPA. the neutral macromoleculargadolinium (Ⅲ) complexes provide higher T_1 relaxivity enhancement and longer function duration.展开更多
Fifteen new polyester ligands were prepared by copolymerndion Of EDTA(ethylenediaminetetraacetic acid ) dianhydride or DTPA (dikthylenetriaminepenlaacetic acid) dianhydrtde and dihydric alcohol or dihydric phenol. The...Fifteen new polyester ligands were prepared by copolymerndion Of EDTA(ethylenediaminetetraacetic acid ) dianhydride or DTPA (dikthylenetriaminepenlaacetic acid) dianhydrtde and dihydric alcohol or dihydric phenol. Theirparanzagnetic metal complexes were also synthesized. All polyester ligands andmetal complexes were characterized by IHNMR, IR spectra and elemental analyses. Preliminary study showed that the polyester .metal complexes had higher relaxation effectiveness as compared to corresponding small molecular metal complexes.展开更多
Three water-soluble Mn(III)-porphyrin complexes with cationic pyridyl side groups bearing COOH-or OH-terminated carbon chains in the meta or para positions have been synthesized as probes for both magnetic resonance i...Three water-soluble Mn(III)-porphyrin complexes with cationic pyridyl side groups bearing COOH-or OH-terminated carbon chains in the meta or para positions have been synthesized as probes for both magnetic resonance imaging(MRI)and photodynamic therapy(PDT).The complexes Mn-1,Mn-2,and Mn-3 are highly water-soluble,and their relaxivities range between 10 and 15 mM^(-1) s^(-1),at 20-80 MHz and 298 K,2-3 times higher than that of commercial Gd(III)-based agents.The complexes containing carboxylate(Mn-2)or alcoholic(Mn-3)side chains in the para position are endowed with higher relaxivities and have also shown efficient photoinduced DNA cleavage and singlet oxygen(^(1)O_(2))generation.Mn-3 with stronger photoinduced DNA cleavage has also revealed stabilizing and binding activities for G4 DNA,at a similar level as the known G4 binder Mn-TMPyP4.Nevertheless,the G4-binding activity of Mn-3 was nonspecific.Preliminary tests evidenced photocytotoxicity of Mn-3 on HeLa cells without a significant effect in the absence of light.Altogether,these results underline the potential of such water-soluble Mn(III)-porphyrins for the development of multimodal approaches combining MRI and PDT.展开更多
Nuclear magnetic resonance (NMR) relaxation of fluids in porous media is affected by the solid-liquid interface. Quantitative determination of the surface relaxivity is significantly important for both investigation a...Nuclear magnetic resonance (NMR) relaxation of fluids in porous media is affected by the solid-liquid interface. Quantitative determination of the surface relaxivity is significantly important for both investigation and application of relaxation mechanisms in porous media. A method to estimate the surface relaxivity with the combination of relaxation and diffusion measurements is proposed. According to this method, a criterion for testing the current diffusion and relaxation theory for porous media is available.展开更多
Synthesis of ligand, α-oxo-pentanedioic acid benzoyl hydrazone (H2LPB), and its six rare earth (La, Pr, Nd, Sm, Gd and Er) complexes are reported. The composition and the properties of the complexes were characterize...Synthesis of ligand, α-oxo-pentanedioic acid benzoyl hydrazone (H2LPB), and its six rare earth (La, Pr, Nd, Sm, Gd and Er) complexes are reported. The composition and the properties of the complexes were characterized by element analysis, thermal analysis, UV, IR and H NMR spectra. Besides, relaxivity (R1) of Gd-complex has been determined by INVREC.Au program, using inversion recovery pulse sequences, R1=8.05 mmol ·L-1 · s-1. The acute toxicity of Gd-complex in animal has also been tested, and the median lethal dose (LD50) is equal to (468.2±30) mg/kg.展开更多
Although the plastic loading can enhance creep deformation and yield strength,the anisotropic Stress Relaxation Aging(SRA)behavior and mechanism under plastic loading remain unclear,which presents a significant challe...Although the plastic loading can enhance creep deformation and yield strength,the anisotropic Stress Relaxation Aging(SRA)behavior and mechanism under plastic loading remain unclear,which presents a significant challenge in accurately shaping aluminum alloy panels.In this study,the SRA behavior of 2195-T4 Al-Cu-Li alloys were thoroughly studied under initial loading stresses within the elastic(210/250 MPa)and plastic(380/420 MPa)ranges at 180℃by stress relaxation and tensile tests as well as microstructure characterization.The findings reveal that compared with those under elastic loadings,in-plane anisotropy(IPA)values of the stress relaxation amount,yield strength and fracture elongation under plastic loadings are reduced by 60%–80%,70%–90% and 72%–89%,respectively.Similarly,IPA values of precipitate size in grains and PrecipitationFree Zones(PFZ)width at grain boundaries under plastic loading decrease by 31.4%and 94.4%respectively.These results indicate plastic loading significantly weakens the anisotropic SRA behavior,owing to numerous uniformly distributed fine T1phases and small IPA values of both T1precipitates size and PFZ width in various loading directions.Compared with those of elastic loadingaged alloys,yield strength of plastic loading-aged alloys shows high strength-ductility because of the combined effect of closely dispersed fine T1precipitates,narrowed PFZ and numerous sheared and rotated T1phases at different locations during tensile process.The uniformly distributed larger Kernel Average Misorientation(KAM)and Schmidt factor values of the plastic loading-aged alloy,as well as the cross-slip generated,also help to enhance the strength and ductility of the alloy.展开更多
Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the de...Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the degradation behavior and failure mechanism of various overcharged states(100%SOC,105%SOC,110%SOC,and 115%SOC),multiple advanced in-situ characterization techniques(accelerating rate calorimeter,electrochemical impedance spectroscopy,ultrasonic scanning,and expansion instrument)were utilized.Additionally,re-overcharge-induced thermal runaway(TR)tests were conducted,with a specific emphasis on the evolution of the expansion force signal.Results indicated significant degradation at 110%SOC including conductivity loss,loss of lithium inventory,and loss of active material accompanied by internal gas generation.These failure behaviors slow down the expansion force rate during reovercharging,reducing the efficacy of active warnings that depend on rate thresholds of expansion force.Specifically,the warning time for 115%SOC battery is only 144 s,which is 740 s shorter than that for fresh battery,and the time to TR is advanced by 9 min.Moreover,the initial self-heating temperature(T1)is reduced by 62.4℃compared to that of fresh battery,reaching only 70.8℃.To address the low safety of overcharged batteries,a passive overcharge warning method utilizing relaxation expansion force was proposed,based on the continued gas generation after stopping charging,leading to a sustained increase in force.Compared to active methods that rely on thresholds of expansion force rate,the passive method can issue warnings 115 s earlier.By combining the passive and active warning methods,guaranteed effective overcharge warning can be issued 863-884 s before TR.This study introduces a novel perspective for enhancing the safety of batteries.展开更多
BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the cli...BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the clinical symptoms of achalasia associated with increased LES pressure.AIM To identify the safety and efficacy of POEM for patients with normal LES integrated relaxation pressure(LES-IRP).METHODS The clinical data of patients who underwent POEM successfully in The First Medical Center of Chinese PLA General Hospital were retrospectively analyzed.A total of 481 patients who underwent preoperative high-resolution manometry(HRM)at our hospital were ultimately included in this research.According to the HRM results,the patients were divided into two groups:71 patients were included in the normal LES-IRP group(LES-IRP<15 mmHg)and 410 patients were included in the increased LES-IRP group(LES-IRP≥15 mmHg).Clinical characteristics,procedure-related parameters,adverse events,and outcomes were compared between the two groups to evaluate the safety and efficacy of POEM for patients with normal LES-IRP.RESULTS Among the 481 patients included in our study,209 were males and 272 were females,with a mean age of 44.2 years.All patients underwent POEM without severe adverse events.The median pre-treatment Eckardt scores of the normal LES-IRP and increased LES-IRP groups were 7.0 and 7.0(P=0.132),respectively,decreasing to 1.0 and 1.0 post-treatment(P=0.572).The clinical success rate of the normal LES-IRP group was 87.3%(62/71),and that of the increased LES-IRP group was 91.2%(374/410)(P=0.298).Reflux symptoms were measured by the GerdQ questionnaire,and the percentages of patients with GerdQ scores≥9 in the normal LES-IRP and increased LES-IRP groups were 8.5%and 10.7%,respectively(P=0.711).After matching,the rates of clinical success and the rates of GerdQ score≥9 were not significantly different between the two groups.CONCLUSION Our results suggest that POEM is safe and effective for achalasia and patients with normal LES-IRP.In addition,in patients with normal LES-IRP,compared with those with increased LES-IRP,POEM was not associated with a greater incidence of reflux symptoms.展开更多
All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid...All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.展开更多
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom...In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.展开更多
In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise c...In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise completely positive(RPCP)decomposition.We study the properties of RPCP matrices and give some necessary and sufficient conditions for a matrix pair to be RPCP.First,we give an equivalent decomposition for the RPCP matrices,which is different from the RPCP-decomposition and show that the matrix pair(X,X)is RPCP if and only if X is completely positive.Besides,we also prove that the RPCP matrices checking problem is equivalent to the separable completion problem.A semidefinite algorithm is also proposed for detecting whether or not a matrix pair is RPCP.The asymptotic and finite convergence of the algorithm are also discussed.If it is RPCP,we can further give a RPCP-decomposition for it;if it is not,we can obtain a certificate for this.展开更多
A novel ligand of DTPA-dihydropyridine derivative was synthesized by reaction of DTPA-dianhydride with 4-aniline-1,4-dihydropyridine. Its complexes of gadolinium, manganese and iron were prepared. Their spin-lattice r...A novel ligand of DTPA-dihydropyridine derivative was synthesized by reaction of DTPA-dianhydride with 4-aniline-1,4-dihydropyridine. Its complexes of gadolinium, manganese and iron were prepared. Their spin-lattice relaxivities (T1) were investigated. The results show that the NMR T1 relaxivitives (R1) for complexes of Fe(Ⅲ), Mn(Ⅱ) are less than that of Gd(Ⅲ) complex,which has a high relaxivity (R1) on the surrounding water protons, indicating that the Gd(Ⅲ) complex possesses the precondition to be contrast agents for magnetic resonance imaging.展开更多
X-ray single crystal analysis of a new paramagnetic manganese(Ⅱ) complex with DTPA-BpABA (a DTPAbisamide derivative), Mn(DTPA-BpABA)·4H2O, shows that four oxygen atoms and three nitrogen atoms from the lig...X-ray single crystal analysis of a new paramagnetic manganese(Ⅱ) complex with DTPA-BpABA (a DTPAbisamide derivative), Mn(DTPA-BpABA)·4H2O, shows that four oxygen atoms and three nitrogen atoms from the ligand coordinate to Mn(Ⅱ) cation, forming a seven-coordinate distorted pentagonal bipyramid polyhedron. In the crystal, the carboxyl groups and the nitrogen atoms extensively form hydrogen bonds with the lattice water molecules, building a 3D-network. The relaxometric study indicates that the R1 value of the paramagnetic manganese(Ⅱ)complex is 5.12 mmol·L·s^-1. The higher R1 value means that this complex may find an application in magnetic resonance imaging (MRI) technique.展开更多
The dynamics of biomolecules span across a wide range of timescales,reflecting the complexity of free energy landscapes of biomolecules.Among these,the microsecond-tomillisecond(μs-ms)timescale dynamics are particula...The dynamics of biomolecules span across a wide range of timescales,reflecting the complexity of free energy landscapes of biomolecules.Among these,the microsecond-tomillisecond(μs-ms)timescale dynamics are particularly significant,offering detailed insights into the kinetic,thermodynamic,and structural aspects of biological function.Many critical biological processes,including enzyme catalysis,protein folding,ligand binding,and allosteric regulation,operate within this timescale.Nuclear magnetic resonance(NMR)spectroscopy is a powerful technique for probing molecular dynamics in this time window,commonly used NMR methods for investigatingμs-ms timescale dynamics include Carr-Purcell-Meiboom-Gill(CPMG)relaxation dispersion,chemical exchange saturation transfer(CEST),and rotating-frame longitudinal relaxation dispersion(R_(1ρ)relaxation dispersion).This review provides a brief ove rview of the fundamental principles and some recent advances of these methods,highlighting their interrelationships and applications in elucidating biomolecular dynamics.展开更多
Objectives:The objective of this study was to assess the impact of two relaxation techniques,the Jacobson’s progressive muscle relaxation technique(JPMR),and the Benson’s relaxation technique(BRT),on the levels of s...Objectives:The objective of this study was to assess the impact of two relaxation techniques,the Jacobson’s progressive muscle relaxation technique(JPMR),and the Benson’s relaxation technique(BRT),on the levels of stress and anxiety experienced by patients undergoing coronary angioplasty.Materials and Methods:Quantitative research approach with quasi-experimental pre-test and posttest control group design was conducted with seventy coronary angioplasty patients from the Institute of Medical Science,and SUM Hospital,Bhubaneswar,Odisha.The participants were purposively selected and divided into Experimental Group 1(n=35)and Experimental Group 2(n=35).Each group received either BRT or JPMR for three consecutive days.Pretest and posttest data were collected using a structured demographic questionnaire and the modified depression anxiety stress scale-21.Results:Both BRT and JPMR significantly decreased the levels of stress and anxiety among patients undergoing angioplasty compared to baseline(P<0.05).However,there was no significant difference between the two techniques based on Fisher’s exact P value.This suggests that both interventions are effective in reducing stress and anxiety among angioplasty patients.Conclusion:BRT or JPMR are noninvasive,nonpharmacological interventions that effectively reduce stress and anxiety in patients undergoing angioplasty.These findings underscore the importance of incorporating relaxation techniques into nursing practice and hospital programs to enhance patient care and promote holistic well-being post-angioplasty.展开更多
The reconfigurable intelligent surfaces(RIS)can reconfigure the wireless channel environment by manipulating the propagation of incident electromagnetic waves.Specifically,we consider using multi-RIS to improve the sy...The reconfigurable intelligent surfaces(RIS)can reconfigure the wireless channel environment by manipulating the propagation of incident electromagnetic waves.Specifically,we consider using multi-RIS to improve the system throughput of limited feedback multiple input single output(MISO)system in an energy efficiency manner.The critical challenge lies in the joint design of channel acquisition and beamforming which are usually based on codebook with limited precision.To solve this,we propose a semi-definite relaxation(SDR)based beamforming design scheme while considering the effect of cascaded channel acquisition.First,a channel quantization scheme is proposed by exploiting the channel sparsity in double-RIS aided MISO system.Second,an optimization problem of maximizing the system throughput is established to derive the channel quantization vector which also serves as the beamforming vector,with the consideration of the constraints of transmission power,RISs phase-shift.Third,a SDR based iterative optimization algorithm is proposed to solve the problem with low complexity.Finally,simulation results show that our proposed algorithm can improve the system throughput efficiently.展开更多
InAs/AlAs superlattice structures have significant potential for application in low-noise avalanche photodetectors.With their performance in practical applications linked to the fundamental physical properties of carr...InAs/AlAs superlattice structures have significant potential for application in low-noise avalanche photodetectors.With their performance in practical applications linked to the fundamental physical properties of carrier relaxation time,this study investigated the carrier relaxation times of InAs/AlAs superlattices across various monolayers,temperatures,and carrier concentrations.Our investigation indicated that relaxation times span several tens of picoseconds,confirming that high-quality interfaces do not significantly reduce relaxation times in the way defect states might.Moreover,our study demonstrates that adjustments to the superlattice period can effectively modulate both the bandgap and carrier relaxation times,potentially impacting the performance of avalanche photodiodes by altering the electron-phonon interaction pathways and bandgap width.We established that lower temperatures contribute to an increase in the bandgap and the suppression of high-frequency optical phonon vibrations,thereby lengthening the relaxation times.Additionally,our observations indicate that in InAs/AlAs superlattices,the relaxation time increases as the excitation power increases,owing to the phonon bottleneck effect.These insights into InAs/AlAs superlattice carrier dynamics highlight their applicability in enhancing avalanche photodetectors,and may contribute to the optimized design of superlattices for specific applications.展开更多
A comprehensive analysis was performed on 30 healthy female participants to assess the impact of fragranced body washes on mood improvement.The study examined their objective electroencephalographic (EEG) changes and ...A comprehensive analysis was performed on 30 healthy female participants to assess the impact of fragranced body washes on mood improvement.The study examined their objective electroencephalographic (EEG) changes and subjective feedback before and after using the fragranced products.The results showed that both the alpha and theta band activities of the participants increased significantly after using body washes,especially in the occipito-parietal and frontal area of brain,indicating that their brains were at a higher level of stability and relaxation.Meanwhile,in terms of subjective evaluation,the participants’ subjective feelings such as calmness,relaxation,tranquility,and calmness were significantly enhanced.This study has revealed the efficacy of fragranced products in improving mood and is expected to provide support for the development and application of fragranced products.展开更多
Fisetin attracts intense attention not only due to its antioxidant and anticancer properties but also be-cause of wide applications in fluo-rescence probes and sensors,which are based on the dual fluorescence induced ...Fisetin attracts intense attention not only due to its antioxidant and anticancer properties but also be-cause of wide applications in fluo-rescence probes and sensors,which are based on the dual fluorescence induced by excited-state proton transfer(ESPT).However,to date,its ESPT dynamics remains unknown yet.In this study,we give a comprehensive investiga-tion on ESPT dynamics of fisetin in both protic methanol and aprot-ic acetonitrile by using femtosecond transient absorption spectroscopy combined with time-dependent density functional theory calculations.In acetonitrile,the ESPT time constant of fisetin is 1.2 ps.In methanol,two distinct intermolecular hydrogen bonding configurations contribute to a fast(<90 fs)and slow ESPT(11.1 ps),respectively.The slow ESPT in methanol explains the higher emission intensity of normal species than in acetonitrile.The ex-cited-state relaxation of fisetin involves two main vibrational modes:rotation between B and C rings and butterfly-like motion of C ring.Our results give insight into the effect of solvent-solute hydrogen bonding interaction on the dual fluorescence,providing a fundamental guide-line for the development of fluorescent probes and sensors based on ESPT.展开更多
文摘Oxopentanedioic acid isonicotinoyl hydrazone (H_2L) and its five rare earth complexes were synthesized with a view to further investigating MRI activities of the polycarboxylic Schiff base complexes. The complexes were characterized on the basis of elemental analyses, IR, UV, (()~1H) NMR spectra and thermal analyses. The general formula of the complexes is [Ln(HL)(H_2O)_2]Cl_2·H_2O (where Ln(Ⅲ)=La, Pr, Nd, Eu and Gd). In addition, the relaxivity ( R _1) of the Gd-complex was determined by INVREC Au program.
基金Project supported by the Chinese Academy of Sciences and the State Sciences and Technology Commission of China.
文摘Five neutral macromolecular polyester gadolinium (Ⅲ) complexes with pendant hydrophobic alkyland aromatic functional groups were prepared. The longitudinal relaxation rates of these complexes weremeasured. One of these Gd (Ⅲ) complexes was chosen for the acute toxicity test and T_1-weighted imagingmeasurement. Preliminary results showed that. compared with Gd-DTPA. the neutral macromoleculargadolinium (Ⅲ) complexes provide higher T_1 relaxivity enhancement and longer function duration.
文摘Fifteen new polyester ligands were prepared by copolymerndion Of EDTA(ethylenediaminetetraacetic acid ) dianhydride or DTPA (dikthylenetriaminepenlaacetic acid) dianhydrtde and dihydric alcohol or dihydric phenol. Theirparanzagnetic metal complexes were also synthesized. All polyester ligands andmetal complexes were characterized by IHNMR, IR spectra and elemental analyses. Preliminary study showed that the polyester .metal complexes had higher relaxation effectiveness as compared to corresponding small molecular metal complexes.
基金supported in part by SNF Strategic Japanese-Swiss Science and Technology Program(IZLJZ2_183660,YY)JSPS,under the Joint Research Program implemented in association with SNF(20191508,H.M.and N.Y.-S),SNF Project Funding(205321_173018,Y.Y.)+4 种基金ETH Research Grants(ETH-21_15-2ETH-36_20-2,Y.Y.)JSPS KAKENHI(Grant-in-Aid for Scientific Research[A],6251004,H.M.Grants-in-Aid for Scientific Research on Innovative Areas,21H00264,22H04707,H.M.Grant-in-Aid for Scientific Research[C],15K07164,N.Y.-S).
文摘Three water-soluble Mn(III)-porphyrin complexes with cationic pyridyl side groups bearing COOH-or OH-terminated carbon chains in the meta or para positions have been synthesized as probes for both magnetic resonance imaging(MRI)and photodynamic therapy(PDT).The complexes Mn-1,Mn-2,and Mn-3 are highly water-soluble,and their relaxivities range between 10 and 15 mM^(-1) s^(-1),at 20-80 MHz and 298 K,2-3 times higher than that of commercial Gd(III)-based agents.The complexes containing carboxylate(Mn-2)or alcoholic(Mn-3)side chains in the para position are endowed with higher relaxivities and have also shown efficient photoinduced DNA cleavage and singlet oxygen(^(1)O_(2))generation.Mn-3 with stronger photoinduced DNA cleavage has also revealed stabilizing and binding activities for G4 DNA,at a similar level as the known G4 binder Mn-TMPyP4.Nevertheless,the G4-binding activity of Mn-3 was nonspecific.Preliminary tests evidenced photocytotoxicity of Mn-3 on HeLa cells without a significant effect in the absence of light.Altogether,these results underline the potential of such water-soluble Mn(III)-porphyrins for the development of multimodal approaches combining MRI and PDT.
文摘Nuclear magnetic resonance (NMR) relaxation of fluids in porous media is affected by the solid-liquid interface. Quantitative determination of the surface relaxivity is significantly important for both investigation and application of relaxation mechanisms in porous media. A method to estimate the surface relaxivity with the combination of relaxation and diffusion measurements is proposed. According to this method, a criterion for testing the current diffusion and relaxation theory for porous media is available.
文摘Synthesis of ligand, α-oxo-pentanedioic acid benzoyl hydrazone (H2LPB), and its six rare earth (La, Pr, Nd, Sm, Gd and Er) complexes are reported. The composition and the properties of the complexes were characterized by element analysis, thermal analysis, UV, IR and H NMR spectra. Besides, relaxivity (R1) of Gd-complex has been determined by INVREC.Au program, using inversion recovery pulse sequences, R1=8.05 mmol ·L-1 · s-1. The acute toxicity of Gd-complex in animal has also been tested, and the median lethal dose (LD50) is equal to (468.2±30) mg/kg.
基金support from the Key Program of the National Natural Science Foundation of China(No.51235010)。
文摘Although the plastic loading can enhance creep deformation and yield strength,the anisotropic Stress Relaxation Aging(SRA)behavior and mechanism under plastic loading remain unclear,which presents a significant challenge in accurately shaping aluminum alloy panels.In this study,the SRA behavior of 2195-T4 Al-Cu-Li alloys were thoroughly studied under initial loading stresses within the elastic(210/250 MPa)and plastic(380/420 MPa)ranges at 180℃by stress relaxation and tensile tests as well as microstructure characterization.The findings reveal that compared with those under elastic loadings,in-plane anisotropy(IPA)values of the stress relaxation amount,yield strength and fracture elongation under plastic loadings are reduced by 60%–80%,70%–90% and 72%–89%,respectively.Similarly,IPA values of precipitate size in grains and PrecipitationFree Zones(PFZ)width at grain boundaries under plastic loading decrease by 31.4%and 94.4%respectively.These results indicate plastic loading significantly weakens the anisotropic SRA behavior,owing to numerous uniformly distributed fine T1phases and small IPA values of both T1precipitates size and PFZ width in various loading directions.Compared with those of elastic loadingaged alloys,yield strength of plastic loading-aged alloys shows high strength-ductility because of the combined effect of closely dispersed fine T1precipitates,narrowed PFZ and numerous sheared and rotated T1phases at different locations during tensile process.The uniformly distributed larger Kernel Average Misorientation(KAM)and Schmidt factor values of the plastic loading-aged alloy,as well as the cross-slip generated,also help to enhance the strength and ductility of the alloy.
基金supported by the National Natural Science Foundation of China(52476200,52106244)the Guangdong Basic and Applied Basic Research Foundation(2024A1515030124)+1 种基金the Science and Technology Project of China Southern Power Grid under Grant GDKJXM20230246(030100KC23020017)the Fundamental Research Funds for the Central Universities。
文摘Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the degradation behavior and failure mechanism of various overcharged states(100%SOC,105%SOC,110%SOC,and 115%SOC),multiple advanced in-situ characterization techniques(accelerating rate calorimeter,electrochemical impedance spectroscopy,ultrasonic scanning,and expansion instrument)were utilized.Additionally,re-overcharge-induced thermal runaway(TR)tests were conducted,with a specific emphasis on the evolution of the expansion force signal.Results indicated significant degradation at 110%SOC including conductivity loss,loss of lithium inventory,and loss of active material accompanied by internal gas generation.These failure behaviors slow down the expansion force rate during reovercharging,reducing the efficacy of active warnings that depend on rate thresholds of expansion force.Specifically,the warning time for 115%SOC battery is only 144 s,which is 740 s shorter than that for fresh battery,and the time to TR is advanced by 9 min.Moreover,the initial self-heating temperature(T1)is reduced by 62.4℃compared to that of fresh battery,reaching only 70.8℃.To address the low safety of overcharged batteries,a passive overcharge warning method utilizing relaxation expansion force was proposed,based on the continued gas generation after stopping charging,leading to a sustained increase in force.Compared to active methods that rely on thresholds of expansion force rate,the passive method can issue warnings 115 s earlier.By combining the passive and active warning methods,guaranteed effective overcharge warning can be issued 863-884 s before TR.This study introduces a novel perspective for enhancing the safety of batteries.
文摘BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the clinical symptoms of achalasia associated with increased LES pressure.AIM To identify the safety and efficacy of POEM for patients with normal LES integrated relaxation pressure(LES-IRP).METHODS The clinical data of patients who underwent POEM successfully in The First Medical Center of Chinese PLA General Hospital were retrospectively analyzed.A total of 481 patients who underwent preoperative high-resolution manometry(HRM)at our hospital were ultimately included in this research.According to the HRM results,the patients were divided into two groups:71 patients were included in the normal LES-IRP group(LES-IRP<15 mmHg)and 410 patients were included in the increased LES-IRP group(LES-IRP≥15 mmHg).Clinical characteristics,procedure-related parameters,adverse events,and outcomes were compared between the two groups to evaluate the safety and efficacy of POEM for patients with normal LES-IRP.RESULTS Among the 481 patients included in our study,209 were males and 272 were females,with a mean age of 44.2 years.All patients underwent POEM without severe adverse events.The median pre-treatment Eckardt scores of the normal LES-IRP and increased LES-IRP groups were 7.0 and 7.0(P=0.132),respectively,decreasing to 1.0 and 1.0 post-treatment(P=0.572).The clinical success rate of the normal LES-IRP group was 87.3%(62/71),and that of the increased LES-IRP group was 91.2%(374/410)(P=0.298).Reflux symptoms were measured by the GerdQ questionnaire,and the percentages of patients with GerdQ scores≥9 in the normal LES-IRP and increased LES-IRP groups were 8.5%and 10.7%,respectively(P=0.711).After matching,the rates of clinical success and the rates of GerdQ score≥9 were not significantly different between the two groups.CONCLUSION Our results suggest that POEM is safe and effective for achalasia and patients with normal LES-IRP.In addition,in patients with normal LES-IRP,compared with those with increased LES-IRP,POEM was not associated with a greater incidence of reflux symptoms.
基金supported by the Beijing Natural Science Foundation(Z200011,L233004)the National Key Research and Development Program(2021YFB2500300)+3 种基金the National Natural Science Foundation of China(52394170,52394171,22109011,22393900,and 22108151)the Tsinghua-Jiangyin Innovation Special Fund(TJISF)(2022JYTH0101)the S&T Program of Hebei(22344402D)the Tsinghua University Initiative Scientific Research Program.
文摘All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.
基金support by the National Key R&D Program of China(Grant No.2023YFA1008901)the National Natural Science Foundation of China(Grant Nos.11988102,12172009)is gratefully acknowledged.
文摘In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.
文摘In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise completely positive(RPCP)decomposition.We study the properties of RPCP matrices and give some necessary and sufficient conditions for a matrix pair to be RPCP.First,we give an equivalent decomposition for the RPCP matrices,which is different from the RPCP-decomposition and show that the matrix pair(X,X)is RPCP if and only if X is completely positive.Besides,we also prove that the RPCP matrices checking problem is equivalent to the separable completion problem.A semidefinite algorithm is also proposed for detecting whether or not a matrix pair is RPCP.The asymptotic and finite convergence of the algorithm are also discussed.If it is RPCP,we can further give a RPCP-decomposition for it;if it is not,we can obtain a certificate for this.
文摘A novel ligand of DTPA-dihydropyridine derivative was synthesized by reaction of DTPA-dianhydride with 4-aniline-1,4-dihydropyridine. Its complexes of gadolinium, manganese and iron were prepared. Their spin-lattice relaxivities (T1) were investigated. The results show that the NMR T1 relaxivitives (R1) for complexes of Fe(Ⅲ), Mn(Ⅱ) are less than that of Gd(Ⅲ) complex,which has a high relaxivity (R1) on the surrounding water protons, indicating that the Gd(Ⅲ) complex possesses the precondition to be contrast agents for magnetic resonance imaging.
基金Project supported by the Municipal Natural Science Foundation of Beijing (No. 2022011).
文摘X-ray single crystal analysis of a new paramagnetic manganese(Ⅱ) complex with DTPA-BpABA (a DTPAbisamide derivative), Mn(DTPA-BpABA)·4H2O, shows that four oxygen atoms and three nitrogen atoms from the ligand coordinate to Mn(Ⅱ) cation, forming a seven-coordinate distorted pentagonal bipyramid polyhedron. In the crystal, the carboxyl groups and the nitrogen atoms extensively form hydrogen bonds with the lattice water molecules, building a 3D-network. The relaxometric study indicates that the R1 value of the paramagnetic manganese(Ⅱ)complex is 5.12 mmol·L·s^-1. The higher R1 value means that this complex may find an application in magnetic resonance imaging (MRI) technique.
基金financially supported by funds from the Natural Science Foundation of Beijing Municipality(Grant Number 7232251)the National Natural Science Foundation of China(Grant Number 22474006)。
文摘The dynamics of biomolecules span across a wide range of timescales,reflecting the complexity of free energy landscapes of biomolecules.Among these,the microsecond-tomillisecond(μs-ms)timescale dynamics are particularly significant,offering detailed insights into the kinetic,thermodynamic,and structural aspects of biological function.Many critical biological processes,including enzyme catalysis,protein folding,ligand binding,and allosteric regulation,operate within this timescale.Nuclear magnetic resonance(NMR)spectroscopy is a powerful technique for probing molecular dynamics in this time window,commonly used NMR methods for investigatingμs-ms timescale dynamics include Carr-Purcell-Meiboom-Gill(CPMG)relaxation dispersion,chemical exchange saturation transfer(CEST),and rotating-frame longitudinal relaxation dispersion(R_(1ρ)relaxation dispersion).This review provides a brief ove rview of the fundamental principles and some recent advances of these methods,highlighting their interrelationships and applications in elucidating biomolecular dynamics.
文摘Objectives:The objective of this study was to assess the impact of two relaxation techniques,the Jacobson’s progressive muscle relaxation technique(JPMR),and the Benson’s relaxation technique(BRT),on the levels of stress and anxiety experienced by patients undergoing coronary angioplasty.Materials and Methods:Quantitative research approach with quasi-experimental pre-test and posttest control group design was conducted with seventy coronary angioplasty patients from the Institute of Medical Science,and SUM Hospital,Bhubaneswar,Odisha.The participants were purposively selected and divided into Experimental Group 1(n=35)and Experimental Group 2(n=35).Each group received either BRT or JPMR for three consecutive days.Pretest and posttest data were collected using a structured demographic questionnaire and the modified depression anxiety stress scale-21.Results:Both BRT and JPMR significantly decreased the levels of stress and anxiety among patients undergoing angioplasty compared to baseline(P<0.05).However,there was no significant difference between the two techniques based on Fisher’s exact P value.This suggests that both interventions are effective in reducing stress and anxiety among angioplasty patients.Conclusion:BRT or JPMR are noninvasive,nonpharmacological interventions that effectively reduce stress and anxiety in patients undergoing angioplasty.These findings underscore the importance of incorporating relaxation techniques into nursing practice and hospital programs to enhance patient care and promote holistic well-being post-angioplasty.
基金supported the Innovation Talents Promotion Program of Shaanxi Province under Grant No.2021TD-08。
文摘The reconfigurable intelligent surfaces(RIS)can reconfigure the wireless channel environment by manipulating the propagation of incident electromagnetic waves.Specifically,we consider using multi-RIS to improve the system throughput of limited feedback multiple input single output(MISO)system in an energy efficiency manner.The critical challenge lies in the joint design of channel acquisition and beamforming which are usually based on codebook with limited precision.To solve this,we propose a semi-definite relaxation(SDR)based beamforming design scheme while considering the effect of cascaded channel acquisition.First,a channel quantization scheme is proposed by exploiting the channel sparsity in double-RIS aided MISO system.Second,an optimization problem of maximizing the system throughput is established to derive the channel quantization vector which also serves as the beamforming vector,with the consideration of the constraints of transmission power,RISs phase-shift.Third,a SDR based iterative optimization algorithm is proposed to solve the problem with low complexity.Finally,simulation results show that our proposed algorithm can improve the system throughput efficiently.
基金supported by the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC4026)。
文摘InAs/AlAs superlattice structures have significant potential for application in low-noise avalanche photodetectors.With their performance in practical applications linked to the fundamental physical properties of carrier relaxation time,this study investigated the carrier relaxation times of InAs/AlAs superlattices across various monolayers,temperatures,and carrier concentrations.Our investigation indicated that relaxation times span several tens of picoseconds,confirming that high-quality interfaces do not significantly reduce relaxation times in the way defect states might.Moreover,our study demonstrates that adjustments to the superlattice period can effectively modulate both the bandgap and carrier relaxation times,potentially impacting the performance of avalanche photodiodes by altering the electron-phonon interaction pathways and bandgap width.We established that lower temperatures contribute to an increase in the bandgap and the suppression of high-frequency optical phonon vibrations,thereby lengthening the relaxation times.Additionally,our observations indicate that in InAs/AlAs superlattices,the relaxation time increases as the excitation power increases,owing to the phonon bottleneck effect.These insights into InAs/AlAs superlattice carrier dynamics highlight their applicability in enhancing avalanche photodetectors,and may contribute to the optimized design of superlattices for specific applications.
文摘A comprehensive analysis was performed on 30 healthy female participants to assess the impact of fragranced body washes on mood improvement.The study examined their objective electroencephalographic (EEG) changes and subjective feedback before and after using the fragranced products.The results showed that both the alpha and theta band activities of the participants increased significantly after using body washes,especially in the occipito-parietal and frontal area of brain,indicating that their brains were at a higher level of stability and relaxation.Meanwhile,in terms of subjective evaluation,the participants’ subjective feelings such as calmness,relaxation,tranquility,and calmness were significantly enhanced.This study has revealed the efficacy of fragranced products in improving mood and is expected to provide support for the development and application of fragranced products.
基金supported by the National Natural Science Foundation of China(No.22003066)。
文摘Fisetin attracts intense attention not only due to its antioxidant and anticancer properties but also be-cause of wide applications in fluo-rescence probes and sensors,which are based on the dual fluorescence induced by excited-state proton transfer(ESPT).However,to date,its ESPT dynamics remains unknown yet.In this study,we give a comprehensive investiga-tion on ESPT dynamics of fisetin in both protic methanol and aprot-ic acetonitrile by using femtosecond transient absorption spectroscopy combined with time-dependent density functional theory calculations.In acetonitrile,the ESPT time constant of fisetin is 1.2 ps.In methanol,two distinct intermolecular hydrogen bonding configurations contribute to a fast(<90 fs)and slow ESPT(11.1 ps),respectively.The slow ESPT in methanol explains the higher emission intensity of normal species than in acetonitrile.The ex-cited-state relaxation of fisetin involves two main vibrational modes:rotation between B and C rings and butterfly-like motion of C ring.Our results give insight into the effect of solvent-solute hydrogen bonding interaction on the dual fluorescence,providing a fundamental guide-line for the development of fluorescent probes and sensors based on ESPT.