The paper is devoted to the study of the gravitational collapse within the framework of the spherically symmetric problem in the Newton theory and general relativity on the basis of the pressure-free model of the cont...The paper is devoted to the study of the gravitational collapse within the framework of the spherically symmetric problem in the Newton theory and general relativity on the basis of the pressure-free model of the continuum. In application to the Newton gravitation theory, the analysis consists of three stages. First, we assume that the gravitational force is determined by the initial sphere radius and constant density and does not change in the process of the sphere collapse. The obtained analytical solution allows us to find the collapse time in the first approximation. Second, we construct the step-by-step process in which the gravitational force at a given time moment depends on the current sphere radius and density. The obtained numerical solution specifies the collapse time depending on the number of steps. Third, we find the exact value of the collapse time which is the limit of the step-by-step solutions and study the collapse and the expansion processes in the Newton theory. In application to general relativity, we use the space model corresponding to the special four-dimensional space which is Euclidean with respect to space coordinates and Riemannian with respect to the time coordinate only. The obtained solution specifies two possible scenarios. First, sphere contraction results in the infinitely high density with the finite collapse time, which does not coincide with the conventional result corresponding to the Schwarzschild geometry. Second, sphere expansion with the velocity which increases with a distance from the sphere center and decreases with time.展开更多
We discuss one-dimensional Dirac oscillator, by using the concept doubly special relativity. We calculate the energy spectrum by using the concept doubly special relativity. Then, we derive another representation that...We discuss one-dimensional Dirac oscillator, by using the concept doubly special relativity. We calculate the energy spectrum by using the concept doubly special relativity. Then, we derive another representation that the coordinate operator remains unchanged at the high energy while the momentum operator is deformed at the high energy so that it may be bounded from the above. Actually, we study the Dirac oscillator by using of the generalized uncertainty principle version and the concept doubly special relativity.展开更多
We verify that the total angular momentum 3-vector defined by the author [X. Zhang, Commun. Math.Phys. 206 (1999) 137] is equal to (0, 0, ma) forany time slice in both the Kerr and the Kerr-Newman spacetimes.
Based on general relativity, J. R. Oppenheimer proved that massive celestial bodies may collapse into singular black holes with infinite densities. By analyzing the original paper of Oppenheimer, this paper reveals th...Based on general relativity, J. R. Oppenheimer proved that massive celestial bodies may collapse into singular black holes with infinite densities. By analyzing the original paper of Oppenheimer, this paper reveals that the calculations had a series and serious of mistakes. The basic problem is that the calculation supposes that the density of celestial body does not change with space-time coordinates. The density is firstly assumed invariable with space coordinates and then it is assumed invariable with time. But at last, the conclusion that the density of a celestial body becomes infinity is deduced. The premise contradicts with conclusion. In fact, there is no restriction on the initial density and radius for celestial body in the calculation. According to the calculation results of Oppenheimer, a cloud of thin gas may also collapse into singular black hole under the action of gravity. The calculations neglect great rotating speeds of massive and high density celestial bodies which would make them falling apart rather than collapsing into singularities. Because we do not know the function relations that material densities depend on space-time coordinates in advance, there exists the rationality problem of procedure using the Einstein’s equation of gravity field to calculate material collapse. Besides these physical problems, the calculation of Oppenheimer also has some obvious mistakes in mathematics. Another improved method to calculate massive celestial body’s collapse also has similar problems. The results are also unreliable. The conclusion of this paper is that up to now general relativity actually has not proved that massive celestial bodies may collapse into singularity black holes.展开更多
The paper is concerned with the formulation of the static problem of general relativity. As known, this problem is reduced to ten equations for the compo-nents of the Einstein tensor and the solution of these equation...The paper is concerned with the formulation of the static problem of general relativity. As known, this problem is reduced to ten equations for the compo-nents of the Einstein tensor and the solution of these equations is associated with two principal problems. First, since the components of the Einstein tensor identically satisfy four conservation equations, only six of these equations are mutually independent. So, the set of the Einstein equations actually contains six independent equations for ten components of the metric tensor and should be supplemented with four additional equations which are missing in the original theory. Second, for a deformable solid the Einstein tensor is associated with the energy tensor which is expressed in terms of six stresses induced by gravitation. These stresses are not known and the relativity theory does not propose any equations for them. Thus, the static problem of general relativity cannot be properly formulated because the set of governing equations is not complete. In the paper, the problem of completeness of the general relativity governing set of equations is analyzed in application to the spherically symmetric static problem and the proposed approach is further described for the general case. As an example, linearized axisymmetric problem is considered.展开更多
A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. ...A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. A space is an infinite continuum and its structure is determined by Riemannian geometry. Assuming that space is an infmite continuum, the pressure field derived from the geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature. As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space.展开更多
In 1916, F.S. Macaulay developed specific localization techniques for dealing with “unmixed polynomial ideals” in commutative algebra, transforming them into what he called “inverse systems” of partial differentia...In 1916, F.S. Macaulay developed specific localization techniques for dealing with “unmixed polynomial ideals” in commutative algebra, transforming them into what he called “inverse systems” of partial differential equations. In 1970, D.C. Spencer and coworkers studied the formal theory of such systems, using methods of homological algebra that were giving rise to “differential homological algebra”, replacing unmixed polynomial ideals by “pure differential modules”. The use of “differential extension modules” and “differential double duality” is essential for such a purpose. In particular, 0-pure differential modules are torsion-free and admit an “absolute parametrization” by means of arbitrary potential like functions. In 2012, we have been able to extend this result to arbitrary pure differential modules, introducing a “relative parametrization” where the potentials should satisfy compatible “differential constraints”. We recently noticed that General Relativity is just a way to parametrize the Cauchy stress equations by means of the formal adjoint of the Ricci operator in order to obtain a “minimum parametrization” by adding sufficiently many compatible differential constraints, exactly like the Lorenz condition in electromagnetism. In order to make this difficult paper rather self-contained, these unusual purely mathematical results are illustrated by many explicit examples, two of them dealing with contact transformations, and even strengthening the comments we recently provided on the mathematical foundations of General Relativity and Gauge Theory. They also bring additional doubts on the origin and existence of gravitational waves.展开更多
In this work, we examine the geometric character of the field equations of general relativity and propose to formulate relativistic field equations in terms of the Riemann curvature tensor. The resulted relativistic f...In this work, we examine the geometric character of the field equations of general relativity and propose to formulate relativistic field equations in terms of the Riemann curvature tensor. The resulted relativistic field equations are also integrated into the general framework that we have presented in our previous works that all known classical fields can be expressed in the same dynamical form. We also discuss a possibility to reformulate the field equations of general relativity so that the Ricci curvature tensor and the energy-momentum tensor can appear symmetrically in the field equations without violating the conservation law stated by the covariant derivative.展开更多
The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in ...The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable.展开更多
The search for the generating compatibility conditions (CC) of a given operator is a very recent problem met in general relativity in order to study the Killing operator for various standard useful metrics. Accordingl...The search for the generating compatibility conditions (CC) of a given operator is a very recent problem met in general relativity in order to study the Killing operator for various standard useful metrics. Accordingly, this paper can be considered as a natural continuation of a previous paper recently published in JMP under the title Minkowski, Schwarschild and Kerr metrics revisited. In particular, we prove that the intrinsic link existing between the lack of formal exactness of an operator sequence on the jet level, the lack of formal exactness of its corresponding symbol sequence and the lack of formal integrability (FI) of the initial operator is of a purely homological nature as it is based on the long exact connecting sequence provided by the so-called snake lemma in homological algebra. It is therefore quite difficult to grasp it in general and even more difficult to use it on explicit examples. It does not seem that any one of the results presented in this paper is known as most of the other authors who studied the above problem of computing the total number of generating CC are confusing this number with the degree of generality introduced by A. Einstein in his 1930 letters to E. Cartan. One of the motivating examples that we provide is so striking that it is even difficult to imagine that such an example could exist. We hope this paper could be used as a source of testing examples for future applications of computer algebra in general relativity and, more generally, in mathematical physics.展开更多
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-I universe by assuming that the cosmological term is proportional...Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-I universe by assuming that the cosmological term is proportional to R-m (R is a scale factor and m is a constant).A variety of solutions are presented.The physical significance of the respective cosmological models are also discussed.展开更多
In the present study, we have obtained a new analytical solution of combined Einstein-Maxwell field equations describing the interior field of a ball having static spherically symmetric isotropic charged flu...In the present study, we have obtained a new analytical solution of combined Einstein-Maxwell field equations describing the interior field of a ball having static spherically symmetric isotropic charged fluid within it. The charge and electric field intensity are zero at the center and monotonically increasing towards the boundary of the fluid ball. Besides these, adiabatic index is also increasing towards the boundary and becomes infinite on it. All other physical quantities such as pressure, density, adiabatic speed of sound, charge density, adiabatic index are monotonically decreasing towards the surface. Causality condition is obeyed at the center of ball. In the limiting case of vanishingly small charge, the solution degenerates into Schwarzchild uniform density solution for electrically neutral fluid. The solution joins smoothly to the Reissner-Nordstrom solution over the boundary. We have constructed a neutron star model by assuming the surface density . The mass of the neutron star comes with radius 14.574 km.展开更多
We take note of the material offered in [1] as to Geometrodynamics as a way to quantify an inter relationship between a quantum style Heisenberg uncertainty principle for a metric tensor and conditions postulated as t...We take note of the material offered in [1] as to Geometrodynamics as a way to quantify an inter relationship between a quantum style Heisenberg uncertainty principle for a metric tensor and conditions postulated as to a barotropic fluid, i.e. dust for early universe conditions. By looking at the onset of processes at/shorter than a Planck Length, in terms of initial expansion of the universe, we use inputs from the metric tensor as a starting point for the variables used in Geometrodynamics.展开更多
In the present investigation of a spherically symmetric electrically neutral anisotropic static fluid, we present a new solution of the Einstein’s general relativistic field equations. The solution shows positive fin...In the present investigation of a spherically symmetric electrically neutral anisotropic static fluid, we present a new solution of the Einstein’s general relativistic field equations. The solution shows positive finite central pressures, central density and central red shift. The causality condition is obeyed at the centre. The anisotropy parameter is zero at the center and monotonically increasing toward the surface. The adiabatic index is also increasing towards the surface. All the other physical quantities such as matter-energy density, radial pressure, tangential pressure, velocity of sound and red shift are monotonically decreasing towards the surface. Further by assuming the surface density , we have constructed a model of massive neutron star with mass 2.95 with radius 18 km with all degree of suitability.展开更多
We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitati...We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitational energymomentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space-time is carried out using the flux of the gravitational energy-momentum.展开更多
Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. ...Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48MQ with BD = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account.展开更多
A theory of(4+1)-dimensional gravity has been developed on the basis of which equivalent to the theory of general relativity by teleparallel.The fundamental gravitational field variables are the 5-dimensional(5D)...A theory of(4+1)-dimensional gravity has been developed on the basis of which equivalent to the theory of general relativity by teleparallel.The fundamental gravitational field variables are the 5-dimensional(5D) vector fields(pentad),defined globally on a manifold M,and gravity is attributed to the torsion.The Lagrangian density is quadratic in the torsion tensor.We then apply the field equations to two different homogenous and isotropic geometric structures which give the same line element,i.e.,FRW in five dimensions.The cosmological parameters are calculated and some cosmological problems are discussed.展开更多
We apply the energy momentum and angular momentum tensor to a tetrad field, with two unknown functions of radial coordinate, in the framework of a teleparallel equivalent of general relativity (TEGR). The definition...We apply the energy momentum and angular momentum tensor to a tetrad field, with two unknown functions of radial coordinate, in the framework of a teleparallel equivalent of general relativity (TEGR). The definition of the gravitational energy is used to investigate the energy within the external event horizon of the dyadosphere region for the Reissner-NordstrSm black hole. We also calculate the spatial momentum and angular momentum.展开更多
According to the conventional theory it is difficult to define the energy-momentum tensor which is locally conservative. The energy-momentum tensor of the gravitational field is defined. Based on a cosmological model ...According to the conventional theory it is difficult to define the energy-momentum tensor which is locally conservative. The energy-momentum tensor of the gravitational field is defined. Based on a cosmological model without singularity, the total energy-momentum tensor is defined which is locally conservative in the general relativity. The tensor of the gravitational mass is different from the energy-momentum tensor, and it satisfies the gravitational field equation and its covariant derivative is zero.展开更多
A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pe...A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.展开更多
文摘The paper is devoted to the study of the gravitational collapse within the framework of the spherically symmetric problem in the Newton theory and general relativity on the basis of the pressure-free model of the continuum. In application to the Newton gravitation theory, the analysis consists of three stages. First, we assume that the gravitational force is determined by the initial sphere radius and constant density and does not change in the process of the sphere collapse. The obtained analytical solution allows us to find the collapse time in the first approximation. Second, we construct the step-by-step process in which the gravitational force at a given time moment depends on the current sphere radius and density. The obtained numerical solution specifies the collapse time depending on the number of steps. Third, we find the exact value of the collapse time which is the limit of the step-by-step solutions and study the collapse and the expansion processes in the Newton theory. In application to general relativity, we use the space model corresponding to the special four-dimensional space which is Euclidean with respect to space coordinates and Riemannian with respect to the time coordinate only. The obtained solution specifies two possible scenarios. First, sphere contraction results in the infinitely high density with the finite collapse time, which does not coincide with the conventional result corresponding to the Schwarzschild geometry. Second, sphere expansion with the velocity which increases with a distance from the sphere center and decreases with time.
文摘We discuss one-dimensional Dirac oscillator, by using the concept doubly special relativity. We calculate the energy spectrum by using the concept doubly special relativity. Then, we derive another representation that the coordinate operator remains unchanged at the high energy while the momentum operator is deformed at the high energy so that it may be bounded from the above. Actually, we study the Dirac oscillator by using of the generalized uncertainty principle version and the concept doubly special relativity.
文摘We verify that the total angular momentum 3-vector defined by the author [X. Zhang, Commun. Math.Phys. 206 (1999) 137] is equal to (0, 0, ma) forany time slice in both the Kerr and the Kerr-Newman spacetimes.
文摘Based on general relativity, J. R. Oppenheimer proved that massive celestial bodies may collapse into singular black holes with infinite densities. By analyzing the original paper of Oppenheimer, this paper reveals that the calculations had a series and serious of mistakes. The basic problem is that the calculation supposes that the density of celestial body does not change with space-time coordinates. The density is firstly assumed invariable with space coordinates and then it is assumed invariable with time. But at last, the conclusion that the density of a celestial body becomes infinity is deduced. The premise contradicts with conclusion. In fact, there is no restriction on the initial density and radius for celestial body in the calculation. According to the calculation results of Oppenheimer, a cloud of thin gas may also collapse into singular black hole under the action of gravity. The calculations neglect great rotating speeds of massive and high density celestial bodies which would make them falling apart rather than collapsing into singularities. Because we do not know the function relations that material densities depend on space-time coordinates in advance, there exists the rationality problem of procedure using the Einstein’s equation of gravity field to calculate material collapse. Besides these physical problems, the calculation of Oppenheimer also has some obvious mistakes in mathematics. Another improved method to calculate massive celestial body’s collapse also has similar problems. The results are also unreliable. The conclusion of this paper is that up to now general relativity actually has not proved that massive celestial bodies may collapse into singularity black holes.
文摘The paper is concerned with the formulation of the static problem of general relativity. As known, this problem is reduced to ten equations for the compo-nents of the Einstein tensor and the solution of these equations is associated with two principal problems. First, since the components of the Einstein tensor identically satisfy four conservation equations, only six of these equations are mutually independent. So, the set of the Einstein equations actually contains six independent equations for ten components of the metric tensor and should be supplemented with four additional equations which are missing in the original theory. Second, for a deformable solid the Einstein tensor is associated with the energy tensor which is expressed in terms of six stresses induced by gravitation. These stresses are not known and the relativity theory does not propose any equations for them. Thus, the static problem of general relativity cannot be properly formulated because the set of governing equations is not complete. In the paper, the problem of completeness of the general relativity governing set of equations is analyzed in application to the spherically symmetric static problem and the proposed approach is further described for the general case. As an example, linearized axisymmetric problem is considered.
文摘A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. A space is an infinite continuum and its structure is determined by Riemannian geometry. Assuming that space is an infmite continuum, the pressure field derived from the geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature. As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space.
文摘In 1916, F.S. Macaulay developed specific localization techniques for dealing with “unmixed polynomial ideals” in commutative algebra, transforming them into what he called “inverse systems” of partial differential equations. In 1970, D.C. Spencer and coworkers studied the formal theory of such systems, using methods of homological algebra that were giving rise to “differential homological algebra”, replacing unmixed polynomial ideals by “pure differential modules”. The use of “differential extension modules” and “differential double duality” is essential for such a purpose. In particular, 0-pure differential modules are torsion-free and admit an “absolute parametrization” by means of arbitrary potential like functions. In 2012, we have been able to extend this result to arbitrary pure differential modules, introducing a “relative parametrization” where the potentials should satisfy compatible “differential constraints”. We recently noticed that General Relativity is just a way to parametrize the Cauchy stress equations by means of the formal adjoint of the Ricci operator in order to obtain a “minimum parametrization” by adding sufficiently many compatible differential constraints, exactly like the Lorenz condition in electromagnetism. In order to make this difficult paper rather self-contained, these unusual purely mathematical results are illustrated by many explicit examples, two of them dealing with contact transformations, and even strengthening the comments we recently provided on the mathematical foundations of General Relativity and Gauge Theory. They also bring additional doubts on the origin and existence of gravitational waves.
文摘In this work, we examine the geometric character of the field equations of general relativity and propose to formulate relativistic field equations in terms of the Riemann curvature tensor. The resulted relativistic field equations are also integrated into the general framework that we have presented in our previous works that all known classical fields can be expressed in the same dynamical form. We also discuss a possibility to reformulate the field equations of general relativity so that the Ricci curvature tensor and the energy-momentum tensor can appear symmetrically in the field equations without violating the conservation law stated by the covariant derivative.
文摘The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable.
文摘The search for the generating compatibility conditions (CC) of a given operator is a very recent problem met in general relativity in order to study the Killing operator for various standard useful metrics. Accordingly, this paper can be considered as a natural continuation of a previous paper recently published in JMP under the title Minkowski, Schwarschild and Kerr metrics revisited. In particular, we prove that the intrinsic link existing between the lack of formal exactness of an operator sequence on the jet level, the lack of formal exactness of its corresponding symbol sequence and the lack of formal integrability (FI) of the initial operator is of a purely homological nature as it is based on the long exact connecting sequence provided by the so-called snake lemma in homological algebra. It is therefore quite difficult to grasp it in general and even more difficult to use it on explicit examples. It does not seem that any one of the results presented in this paper is known as most of the other authors who studied the above problem of computing the total number of generating CC are confusing this number with the degree of generality introduced by A. Einstein in his 1930 letters to E. Cartan. One of the motivating examples that we provide is so striking that it is even difficult to imagine that such an example could exist. We hope this paper could be used as a source of testing examples for future applications of computer algebra in general relativity and, more generally, in mathematical physics.
文摘Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-I universe by assuming that the cosmological term is proportional to R-m (R is a scale factor and m is a constant).A variety of solutions are presented.The physical significance of the respective cosmological models are also discussed.
文摘In the present study, we have obtained a new analytical solution of combined Einstein-Maxwell field equations describing the interior field of a ball having static spherically symmetric isotropic charged fluid within it. The charge and electric field intensity are zero at the center and monotonically increasing towards the boundary of the fluid ball. Besides these, adiabatic index is also increasing towards the boundary and becomes infinite on it. All other physical quantities such as pressure, density, adiabatic speed of sound, charge density, adiabatic index are monotonically decreasing towards the surface. Causality condition is obeyed at the center of ball. In the limiting case of vanishingly small charge, the solution degenerates into Schwarzchild uniform density solution for electrically neutral fluid. The solution joins smoothly to the Reissner-Nordstrom solution over the boundary. We have constructed a neutron star model by assuming the surface density . The mass of the neutron star comes with radius 14.574 km.
文摘We take note of the material offered in [1] as to Geometrodynamics as a way to quantify an inter relationship between a quantum style Heisenberg uncertainty principle for a metric tensor and conditions postulated as to a barotropic fluid, i.e. dust for early universe conditions. By looking at the onset of processes at/shorter than a Planck Length, in terms of initial expansion of the universe, we use inputs from the metric tensor as a starting point for the variables used in Geometrodynamics.
文摘In the present investigation of a spherically symmetric electrically neutral anisotropic static fluid, we present a new solution of the Einstein’s general relativistic field equations. The solution shows positive finite central pressures, central density and central red shift. The causality condition is obeyed at the centre. The anisotropy parameter is zero at the center and monotonically increasing toward the surface. The adiabatic index is also increasing towards the surface. All the other physical quantities such as matter-energy density, radial pressure, tangential pressure, velocity of sound and red shift are monotonically decreasing towards the surface. Further by assuming the surface density , we have constructed a model of massive neutron star with mass 2.95 with radius 18 km with all degree of suitability.
文摘We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitational energymomentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space-time is carried out using the flux of the gravitational energy-momentum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10947023,11275073,and 11305063)the Fundamental Research Funds for the Central University of China(Grant Nos.2014ZG0036 and 2013ZM107)sponsored by the Science Research Foundation for Returned Overseas Chinese Scholars,SEM,and has made use of NASA’s Astrophysics Data System
文摘Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48MQ with BD = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account.
文摘A theory of(4+1)-dimensional gravity has been developed on the basis of which equivalent to the theory of general relativity by teleparallel.The fundamental gravitational field variables are the 5-dimensional(5D) vector fields(pentad),defined globally on a manifold M,and gravity is attributed to the torsion.The Lagrangian density is quadratic in the torsion tensor.We then apply the field equations to two different homogenous and isotropic geometric structures which give the same line element,i.e.,FRW in five dimensions.The cosmological parameters are calculated and some cosmological problems are discussed.
文摘We apply the energy momentum and angular momentum tensor to a tetrad field, with two unknown functions of radial coordinate, in the framework of a teleparallel equivalent of general relativity (TEGR). The definition of the gravitational energy is used to investigate the energy within the external event horizon of the dyadosphere region for the Reissner-NordstrSm black hole. We also calculate the spatial momentum and angular momentum.
文摘According to the conventional theory it is difficult to define the energy-momentum tensor which is locally conservative. The energy-momentum tensor of the gravitational field is defined. Based on a cosmological model without singularity, the total energy-momentum tensor is defined which is locally conservative in the general relativity. The tensor of the gravitational mass is different from the energy-momentum tensor, and it satisfies the gravitational field equation and its covariant derivative is zero.
文摘A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.