期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Elliptical formation control based on relative orbit elements 被引量:3
1
作者 Yin Jianfeng Han Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1554-1567,共14页
A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse... A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method. 展开更多
关键词 Elliptical formation control Formation flying Fuel optimal Impulsive control relative orbit elements
原文传递
Model predictive control for formation flying based on D’Amico relative orbital elements
2
作者 Tyson K.Smith John Akagi Greg Droge 《Astrodynamics》 2025年第2期143-163,共21页
The desire to fly small spacecraft close together has been a topic of increasing interest over the past several years.This paper presents the development and analysis of a model predictive control based framework that... The desire to fly small spacecraft close together has been a topic of increasing interest over the past several years.This paper presents the development and analysis of a model predictive control based framework that is used with the D’Amico relative orbital elements(ROEs)to maintain the desired trajectories of a cluster of spacecraft while also allowing freedom to maneuver within some allowable bounds.Switching surfaces based on the ROE constraints contain the full state of the system,allowing for fuel reduction over other approaches that use the Hill—Clohessy—Wiltshire equations.The formation and boundary constraints are designed such that no two agents have overlapping regions,allowing the vehicles to maintain safety of flight without continually maintaining the trajectories of other agents.This framework allows for a scalable method that can support clusters of satellites to safely achieve mission objectives while minimizing fuel usage.This paper provides simulated results of the framework for a three spacecraft formation that demonstrates a 67%fuel reduction when compared to previous approaches. 展开更多
关键词 formation flying model predictive control(MPC) relative orbital elements(ROEs) switching surfaces
原文传递
USEFUL RELATIVE MOTION DESCRIPTION METHOD FOR PERTURBATIONS ANALYSIS IN SATELLITEFORMATION FLYING
3
作者 孟鑫 李俊峰 +1 位作者 高云峰 MA Xing-rui 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第11期1464-1474,共11页
A set of parameters called relative orbital elements were defined to describe the relative motion of the satellites in the formation flying. With the help of these parameters, the effect of the perturbations on the re... A set of parameters called relative orbital elements were defined to describe the relative motion of the satellites in the formation flying. With the help of these parameters, the effect of the perturbations on the relative orbit trajectory and geometric properties of satellite formation can be easily analyzed. First, the relative orbital elements are derived, and pointed out: if the eccentricity of the leading satellite is a small value, the relative orbit trajectory is determined by the intersection between an elliptic cylinder and a plane in the leading satellite orbit frame reference; and the parameters that describe the elliptic cylinder and the plane can be used to obtain the relative orbit trajectory and the relative orbital elements. Second, by analyzing the effects of gravitational perturbations on the relative orbit using the relative orbital elements,it is found that the propagation of a relative orbit consists of two parts : one is the drift of the elliptic cylinder; and the other is the rotation of the plane resulted from the rotation of the normal of the plane. Meanwhile, the analytic formulae for the drift and rotation rates of a relative trajectory under gravitational perturbations are presented. Finally, the relative orbit trajectory and the corresponding changes were analyzed with respect to the J2 perturbation. 展开更多
关键词 satellite formation flying relative orbital element gravitational perturbation drift rate rotation rate
在线阅读 下载PDF
Improved Repetitive Control for High-Precision Satellite Rendezvous
4
作者 ZHANG Yi QI Ruiyun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期201-218,共18页
This paper is focused on control design for high-precision satellite rendezvous systems.A relative motion model of leader-follower satellites described by relative orbit elements(ROE)is adopted,which has clear geometr... This paper is focused on control design for high-precision satellite rendezvous systems.A relative motion model of leader-follower satellites described by relative orbit elements(ROE)is adopted,which has clear geometric meaning and high accuracy.An improved repetitive control(IRC)scheme is proposed to achieve high-precision position and velocity tracking,which utilizes the advantage of repetitive control to track the signal precisely and conquers the effects of aperiodic disturbances by adding a nonsingular terminal sliding mode(NSTSM)controller.In addition,the nonlinear state error feedback(NLSEF)is used to improve the dynamic performance of repetitive controller and the radial basis function(RBF)neural networks are employed to approximate the unknown nonlinearities.From rigorous Lyapunov analysis,the stability of the whole closed-loop control system is guaranteed.Finally,numerical simulations are carried out to assess the efficiency and demonstrate the advantages of the proposed control scheme. 展开更多
关键词 satellite rendezvous relative orbit elements repetitive control sliding mode control radial basis function(RBF)neural network
在线阅读 下载PDF
COMPARISON OF TWO METHODS IN SATELLITE FORMATION FLYING 被引量:1
5
作者 高云峰 宝音贺西 李俊峰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第8期902-908,共7页
Recently, the research of dynamics and control of the satellite formation flying has been attracting a great deal of attentions of the researchers. The theory of the research was mainly based on Clohessy-Wiltshire'... Recently, the research of dynamics and control of the satellite formation flying has been attracting a great deal of attentions of the researchers. The theory of the research was mainly based on Clohessy-Wiltshire' s (C-W's) equations, which describe the relative motion between two satellites. But according to some special examples and qualitative analysis , neither the initial parameters nor the period of the solution of C-W' s equations accord with the actual situation, and the conservation of energy is no longer held. A new method developed from orbital element description of single satellite , named relative orbital element method ( ROEM) , was introduced. This new method, with clear physics conception and wide application range, overcomes the limitation of C-W s equation , and the periodic solution is a natural conclusion. The simplified equation of the relative motion is obtained when the eccentricity of the main satellite is small. Finally, the results of the two methods (C-W' s equation and ROEM) are compared and the limitations of C-W s equations are pointed out and explained. 展开更多
关键词 satellite formation flying relative motion C-W' s equation relative orbital element method periodic solution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部