期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interval Estimation in a Two Parameter Weibull Distribution Based on Type-2 Censored Data 被引量:1
1
作者 Raphael Masila Mweleli Luke Akong’o Orawo +1 位作者 Cox Lwaka Tamba Justin Obwoge Okenye 《Open Journal of Statistics》 2020年第6期1039-1056,共18页
In this paper, we consider the construction of the approximate profile-</span><span style="font-family:""> </span><span style="font-family:Verdana;">likelihood confiden... In this paper, we consider the construction of the approximate profile-</span><span style="font-family:""> </span><span style="font-family:Verdana;">likelihood confidence intervals for parameters of the 2-parameter Weibull distribution based on small type-2 censored samples. In previous research works, the traditional Wald method has been used to construct approximate confidence intervals for the 2-parameter Weibull distribution</span><span style="font-family:""> </span><span style="font-family:Verdana;">under type-2 censoring scheme. However, the Wald technique is based on normality assumption and thus may not produce accurate interval estimates for small samples. The profile-likelihood and Wald confidence intervals are constructed for the shape and scale parameters of the 2-parameter Weibull distribution based on simulated and real type-2 censored data, and are hence compared using confidence length and coverage probability. 展开更多
关键词 Two-Parameter Weibull Distribution Interval Estimation relative likelihood function Maximum relative likelihood function Profile-likelihood Interval Coverage Probability
在线阅读 下载PDF
Confidence Intervals for the Binomial Proportion: A Comparison of Four Methods 被引量:1
2
作者 Luke Akong’o Orawo 《Open Journal of Statistics》 2021年第5期806-816,共11页
This paper presents four methods of constructing the confidence interval for the proportion <i><span style="font-family:Verdana;">p</span></i><span style="font-family:;" ... This paper presents four methods of constructing the confidence interval for the proportion <i><span style="font-family:Verdana;">p</span></i><span style="font-family:;" "=""><span style="font-family:Verdana;"> of the binomial distribution. Evidence in the literature indicates the standard Wald confidence interval for the binomial proportion is inaccurate, especially for extreme values of </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;">. Even for moderately large sample sizes, the coverage probabilities of the Wald confidence interval prove to be erratic for extreme values of </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;">. Three alternative confidence intervals, namely, Wilson confidence interval, Clopper-Pearson interval, and likelihood interval</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> are compared to the Wald confidence interval on the basis of coverage probability and expected length by means of simulation.</span> 展开更多
关键词 Binomial Distribution Confidence Interval Coverage Probability Expected Length relative likelihood function
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部