Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,...Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.展开更多
The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes de...The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models.展开更多
文摘Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.
基金supported by the Technology Projects of Guizhou Province under Grant[2024]003National Natural Science Foundation of China(GrantNos.62166007,62066008,62066007)Guizhou Provincial Science and Technology Projects under Grant No.ZK[2023]300.
文摘The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models.