期刊文献+
共找到738篇文章
< 1 2 37 >
每页显示 20 50 100
Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis
1
作者 Kun Liu Chen Bao Sidong Liu 《Computers, Materials & Continua》 2025年第3期4451-4468,共18页
Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,l... Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,labeled data is very scarce due to patient privacy concerns.For researchers,obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding.In addition,skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions.In this paper,we propose a model called Coalition Sample Relation Consistency(CSRC),a consistency-based method that leverages Canonical Correlation Analysis(CCA)to capture the intrinsic relationships between samples.Considering that traditional consistency-based models only focus on the consistency of prediction,we additionally explore the similarity between features by using CCA.We enforce feature relation consistency based on traditional models,encouraging the model to learn more meaningful information from unlabeled data.Finally,considering that cross-entropy loss is not as suitable as the supervised loss when studying with imbalanced datasets(i.e.,ISIC 2017 and ISIC 2018),we improve the supervised loss to achieve better classification accuracy.Our study shows that this model performs better than many semi-supervised methods. 展开更多
关键词 Semi-supervised learning skin lesion classification sample relation consistency class imbalanced
在线阅读 下载PDF
Relation Classification via Sequence Features and Bi-Directional LSTMs 被引量:7
2
作者 REN Yuanfang TENG Chong +2 位作者 LI Fei CHEN Bo JI Donghong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第6期489-497,共9页
Structure features need complicated pre-processing, and are probably domain-dependent. To reduce time cost of pre-processing, we propose a novel neural network architecture which is a bi-directional long-short-term-me... Structure features need complicated pre-processing, and are probably domain-dependent. To reduce time cost of pre-processing, we propose a novel neural network architecture which is a bi-directional long-short-term-memory recurrent-neural-network(Bi-LSTM-RNN) model based on low-cost sequence features such as words and part-of-speech(POS) tags, to classify the relation of two entities. First, this model performs bi-directional recurrent computation along the tokens of sentences. Then, the sequence is divided into five parts and standard pooling functions are applied over the token representations of each part. Finally, the token representations are concatenated and fed into a softmax layer for relation classification. We evaluate our model on two standard benchmark datasets in different domains, namely Sem Eval-2010 Task 8 and Bio NLP-ST 2016 Task BB3. In Sem Eval-2010 Task 8, the performance of our model matches those of the state-of-the-art models, achieving 83.0% in F1. In Bio NLP-ST 2016 Task BB3, our model obtains F1 51.3% which is comparable with that of the best system. Moreover, we find that the context between two target entities plays an important role in relation classification and it can be a replacement of the shortest dependency path. 展开更多
关键词 Bi-LSTM-RNN relation classification sequence features structure features
原文传递
Relational Turkish Text Classification Using Distant Supervised Entities and Relations
3
作者 Halil Ibrahim Okur Kadir Tohma Ahmet Sertbas 《Computers, Materials & Continua》 SCIE EI 2024年第5期2209-2228,共20页
Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu... Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research. 展开更多
关键词 Text classification relation extraction NER distant supervision deep learning machine learning
在线阅读 下载PDF
Multi-relational classification on the basis of the attribute reduction twice
4
作者 PAN Cao WANG Hong-yuan 《通讯和计算机(中英文版)》 2009年第11期49-52,共4页
关键词 属性 分类 基础 关系数据挖掘 剪枝策略 实验证明 低品质 作者
在线阅读 下载PDF
Chinese satellite frequency and orbit entity relation extraction method based on dynamic integrated learning
5
作者 Yuanzhi He Zhiqiang Li Zheng Dou 《Digital Communications and Networks》 2025年第3期787-794,共8页
Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatical... Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatically mine available SFO resources.An essential aspect of constructing SFO-KG is the extraction of Chinese entity relations.Unfortunately,there is currently no publicly available Chinese SFO entity Relation Extraction(RE)dataset.Moreover,publicly available SFO text data contain numerous NA(representing for“No Answer”)relation category sentences that resemble other relation sentences and pose challenges in accurate classification,resulting in low recall and precision for the NA relation category in entity RE.Consequently,this issue adversely affects both the accuracy of constructing the knowledge graph and the efficiency of RE processes.To address these challenges,this paper proposes a method for extracting Chinese SFO text entity relations based on dynamic integrated learning.This method includes the construction of a manually annotated Chinese SFO entity RE dataset and a classifier combining features of SFO resource data.The proposed approach combines integrated learning and pre-training models,specifically utilizing Bidirectional Encoder Representation from Transformers(BERT).In addition,it incorporates one-class classification,attention mechanisms,and dynamic feedback mechanisms to improve the performance of the RE model.Experimental results show that the proposed method outperforms the traditional methods in terms of F1 value when extracting entity relations from both balanced and long-tailed datasets. 展开更多
关键词 Knowledge graph relation extraction One-class classification Satellite frequency and orbit resources BERT
在线阅读 下载PDF
基于RCS序列的空间目标分类识别方法 被引量:6
6
作者 张军 马君国 +1 位作者 朱江 付强 《火力与指挥控制》 CSCD 北大核心 2006年第12期98-100,104,共4页
结合三轴稳定卫星、自旋稳定卫星、翻滚目标和空间碎片的运动特征,依据强散射中心理论分别建立这四类空间目标的电磁散射模型,通过计算机仿真得到其RCS序列仿真值。针对这四类空间目标的RCS序列特点,提出了一种三轴稳定卫星与空间碎片... 结合三轴稳定卫星、自旋稳定卫星、翻滚目标和空间碎片的运动特征,依据强散射中心理论分别建立这四类空间目标的电磁散射模型,通过计算机仿真得到其RCS序列仿真值。针对这四类空间目标的RCS序列特点,提出了一种三轴稳定卫星与空间碎片的判别方法和利用RCS的周期性对空间目标分类识别算法,计算机仿真实验验证了算法的有效性。 展开更多
关键词 空间目标 rcS序列 仿真 分类识别
在线阅读 下载PDF
基于RCS信息的雷达目标大小分类方法 被引量:10
7
作者 王洋 李玉书 张健 《现代雷达》 CSCD 北大核心 2009年第2期17-19,共3页
由于低分辨率雷达信息量有限,不能对目标的属性特征等做出精确的判断分类,只能做到粗略的分类判断。因此,文中给出了一种雷达散射截面(RCS)统计信息的低分辨率雷达对目标大小的分类方法。讨论了一种利用最大最小距离的聚类模式识别算法... 由于低分辨率雷达信息量有限,不能对目标的属性特征等做出精确的判断分类,只能做到粗略的分类判断。因此,文中给出了一种雷达散射截面(RCS)统计信息的低分辨率雷达对目标大小的分类方法。讨论了一种利用最大最小距离的聚类模式识别算法。并通过对实测数据的处理对算法进行了验证,证实了利用RCS统计特性结合最大最小距离的聚类模式识别算法对目标进行大小分类的可行性。 展开更多
关键词 雷达散射截面 最大最小距离算法 目标分类
在线阅读 下载PDF
三倍体毛白杨常规APMP与P-RCAPMP的制浆研究 被引量:8
8
作者 孔凡功 陈嘉川 +2 位作者 詹怀宇 杨桂花 李昭成 《中国造纸学报》 CAS CSCD 北大核心 2004年第2期21-24,共4页
对三倍体毛白杨分别进行了常规APMP与P RCAPMP制浆的研究 ,通过对两种浆料性能的比较发现 ,在相同化学药品用量、相同化学药品分配、相近打浆度时 ,P RCAPMP具有较高的松厚度、白度、不透明度和光散射系数 ,而常规APMP具有较高的紧度和... 对三倍体毛白杨分别进行了常规APMP与P RCAPMP制浆的研究 ,通过对两种浆料性能的比较发现 ,在相同化学药品用量、相同化学药品分配、相近打浆度时 ,P RCAPMP具有较高的松厚度、白度、不透明度和光散射系数 ,而常规APMP具有较高的紧度和物理强度 ;纤维质量分析和纤维筛分分析表明 ,常规APMP具有较多的长纤维组分 ,较少的细小纤维组分和粗大纤维束 ,其纤维平均长度略长于P RCAPMP ,而两者的纤维卷曲指数和纤维扭结指数基本相同。 展开更多
关键词 APMP制浆 P-rc 制浆 打浆度 细小纤维 松厚度 浆料性能 三倍体毛白杨 用量 纤维质量
在线阅读 下载PDF
近场散射与远场RCS的链条关系式 被引量:8
9
作者 何国瑜 陈海波 +1 位作者 苗俊刚 李志平 《微波学报》 CSCD 北大核心 2006年第4期1-4,共4页
与远场RCS比较,近场散射问题更复杂、更普遍,且有重要意义。近场散射与远场RCS之间的关系是近场散射研究中的前沿课题之一。本文首先引用三天线概念,其次利用天线耦合公式及电磁场的互易定理导出简洁的链条关系式。最后利用线性系统理... 与远场RCS比较,近场散射问题更复杂、更普遍,且有重要意义。近场散射与远场RCS之间的关系是近场散射研究中的前沿课题之一。本文首先引用三天线概念,其次利用天线耦合公式及电磁场的互易定理导出简洁的链条关系式。最后利用线性系统理论中的基本概念对链条关系式作物理意义的解释。链条关系式在目标特性研究、远场和近场散射测量等方面有重要意义。 展开更多
关键词 近场电磁散射 远场rcS 链条关系式
在线阅读 下载PDF
基于RCS特征的弹道中段目标粗分类 被引量:5
10
作者 李星星 姚汉英 孙文峰 《空军预警学院学报》 2013年第1期20-24,共5页
利用RCS特征对弹道中段目标进行粗分类,可有效提高后续弹道目标的精确判别能力.通过建立常见的弹道目标三种微动模型,依据不同弹道目标物理结构及在中段飞行时的运动姿态差异,提出一种利用RCS序列标准差及其功率谱熵相结合的弹道目标粗... 利用RCS特征对弹道中段目标进行粗分类,可有效提高后续弹道目标的精确判别能力.通过建立常见的弹道目标三种微动模型,依据不同弹道目标物理结构及在中段飞行时的运动姿态差异,提出一种利用RCS序列标准差及其功率谱熵相结合的弹道目标粗分类方法.通过仿真对得到的RCS序列进行了弹道目标粗分类实验,验证了该方法的有效性,并给出了一些有用结论. 展开更多
关键词 rcS特征 弹道目标 粗分类 微动 功率谱熵
在线阅读 下载PDF
一种新的快速报文分类算法——RC-FST 被引量:1
11
作者 谭兴晔 张勇 雷振明 《计算机应用研究》 CSCD 北大核心 2005年第4期62-64,共3页
RC FST算法利用IP地址高 8比特前缀建立Hash压缩索引表,将分类规则集分成多个子集,并针对每个子集建立快速搜索树,而这些规模相对小的本地搜索树更利于实现快速建立、查找和优化。为提高搜索树性能,在规则分割等问题上也提出了独到的解... RC FST算法利用IP地址高 8比特前缀建立Hash压缩索引表,将分类规则集分成多个子集,并针对每个子集建立快速搜索树,而这些规模相对小的本地搜索树更利于实现快速建立、查找和优化。为提高搜索树性能,在规则分割等问题上也提出了独到的解决方法,该算法查找速度快 (50Mbps)、支持分类规则数据库大、可扩展性好,适于硬件流水线方式实现,具有很高的实用价值。 展开更多
关键词 报文分类 rc.FST 前缀对 Hash压缩索引表 搜索树
在线阅读 下载PDF
基于XDense-RC-net的CXR图像分类算法 被引量:2
12
作者 程文娟 于国庆 《计算机应用研究》 CSCD 北大核心 2022年第12期3803-3807,共5页
卷积神经网络逐渐应用于胸部X射线(chset X-ray,CXR)图像分类领域,目前普遍使用迁移学习技术进行分类研究,但在快速构建网络时未能考虑CXR图像的特异性。针对上述问题,提出了一种新型的XDense-RC-net方法。该方法对DenseNet模型进行改进... 卷积神经网络逐渐应用于胸部X射线(chset X-ray,CXR)图像分类领域,目前普遍使用迁移学习技术进行分类研究,但在快速构建网络时未能考虑CXR图像的特异性。针对上述问题,提出了一种新型的XDense-RC-net方法。该方法对DenseNet模型进行改进,在原密集连接层引入新提出的空间注意力机制,实现特征提取和特征融合,优化DenseNet的transition模块,同时使用两种不同的池化策略增强模型的抗扰动能力。实验使用chest X-ray14多标签14分类数据集和COVIDx单标签3分类数据集对XDense-RC-net进行验证。在多标签分类实验中,平均AUC值达到0.854,比基准方法提升了0.109。在单标签分类实验中,平均准确率达到96.75%,相较于基准方法提升了7.75%。结果显示,XDense-RC-net提升了CXR图像分类的精度,并能够泛化至多标签和单标签两种不同的分类任务中。 展开更多
关键词 CXR图像 图像分类 XDense-rc-net 注意力机制
在线阅读 下载PDF
基于ArcSDE的矿产资源信息管理的方法与技术研究 被引量:1
13
作者 承达瑜 张海荣 +1 位作者 顾和和 沈泉飞 《矿业快报》 2006年第11期20-23,共4页
鉴于当前矿产资源管理方式和技术相对落后的状况,在对矿产资源数据进行合理分类的基础上,建立全关系型的资源信息空间数据库,根据当前矿产资源管理的流程设计了管理信息系统,并对应用GIS进行矿产资源管理的方法和关键技术作了详细探讨。
关键词 数据分类 全关系型空间数据库 GIS ArcSDE
在线阅读 下载PDF
预应力CFRP布加固RC梁抗弯承载力影响参数分析 被引量:1
14
作者 郝娟 吴见丰 《福建建筑》 2011年第8期38-40,共3页
采用灰色系统理论的关联分析方法,对已有17组预应力CFRP布加固RC梁的实验数据进行关联度计算,分析碳纤维布配布量、梁截面高度、钢筋配筋率、预应力度、混凝土强度和碳纤维布抗拉强度等参数对加固梁抗弯承载力的影响。结果表明,上述影... 采用灰色系统理论的关联分析方法,对已有17组预应力CFRP布加固RC梁的实验数据进行关联度计算,分析碳纤维布配布量、梁截面高度、钢筋配筋率、预应力度、混凝土强度和碳纤维布抗拉强度等参数对加固梁抗弯承载力的影响。结果表明,上述影响参数对加固梁的抗弯承载力影响程度依次递减。本文构建了一个考虑影响参数组合权系数的预应力CFRP布加固RC梁抗弯承载力计算模型,并回归出系数向量,公式计算值与试验值吻合良好。 展开更多
关键词 预应力CFRP布 rc加固梁 影响参数 灰色关联分析
在线阅读 下载PDF
基于改进MUSIC算法的散射中心参数提取及RCS重构 被引量:13
15
作者 郑舒予 张小宽 宗彬锋 《系统工程与电子技术》 EI CSCD 北大核心 2020年第1期76-82,共7页
随着隐身技术的发展,雷达目标的边缘绕射等逐渐取代镜面散射成为主要的散射源,因此基于几何绕射理论(geometric theory of diffraction,GTD)的散射中心模型对隐身目标电磁散射特性的描述要比衰减指数和模型更为精确。显然,准确估计出GT... 随着隐身技术的发展,雷达目标的边缘绕射等逐渐取代镜面散射成为主要的散射源,因此基于几何绕射理论(geometric theory of diffraction,GTD)的散射中心模型对隐身目标电磁散射特性的描述要比衰减指数和模型更为精确。显然,准确估计出GTD散射中心参数对刻画目标散射特性犹为重要。针对经典多重信号分类(multiple signal classification,MUSIC)法仅利用目标原始回波数据、参数估计精度不高这一问题,提出一种改进的MUSIC算法对散射参数估计提取。改进的MUSIC算法通过对原始回波数据取共轭,构建新的总协方差矩阵,有效利用了目标原始回波数据的共轭信息。仿真结果表明,与经典MUSIC算法相比,改进的MUSIC算法参数估计精度更高,雷达散射截面重构拟合程度更好,且运算量增加不大,可有效提取出隐身目标的散射中心。 展开更多
关键词 散射中心 几何绕射理论 改进多重信号分类算法 共轭矩阵 雷达散射截面重构
在线阅读 下载PDF
Durability classification of red beds rocks in central Yunnan based on particle size distribution and slaking procedure 被引量:3
16
作者 ZHU Jun-jie DENG Hui 《Journal of Mountain Science》 SCIE CSCD 2019年第3期714-724,共11页
Moisture induced disintegration of soft rock in Red Beds is common all over the world. The slake durability index test is most useful to quantify durability of the soft rocks. Based on a series of slaking test, this a... Moisture induced disintegration of soft rock in Red Beds is common all over the world. The slake durability index test is most useful to quantify durability of the soft rocks. Based on a series of slaking test, this article aims to develop a durability classification involving particle size and slaking procedure. To describe the slaking procedure in detail,the Relative Slake Durability Index(Id_i) is proposed. The Id_i is the percentage ratio of the i^(th) weight of oven-dry retained portion to the(i-1)^(th) weight of ovendry retained portion. Results show that the Id_i of samples have a large difference in certain slaking procedure, whereas the traditional Durability Slake Index(Id) is almost constant. Considering this limitation of Id in durability classification, an advanced classification by applying the Id_i and disintegration ratio(DR) is further established in this article. Compared to the durability classification based on Slake Durability Index(Id), the new classification accounts for the particle size of the slaked material and the slaking procedure, so it provides a better measure of the degree of slaking. The classification recommended in this article divide the slake durability into three classes(i.e., low, medium and high class). Furthermore, it divides both the low class and the medium class into 3 subclasses. 展开更多
关键词 Slaking test DURABILITY classification RELATIVE DURABILITY INDEX DURABILITY INDEX Disintegrate rate
原文传递
STRNet:Triple-stream Spatiotemporal Relation Network for Action Recognition 被引量:2
17
作者 Zhi-Wei Xu Xiao-Jun Wu Josef Kittler 《International Journal of Automation and computing》 EI CSCD 2021年第5期718-730,共13页
Learning comprehensive spatiotemporal features is crucial for human action recognition. Existing methods tend to model the spatiotemporal feature blocks in an integrate-separate-integrate form, such as appearance-and-... Learning comprehensive spatiotemporal features is crucial for human action recognition. Existing methods tend to model the spatiotemporal feature blocks in an integrate-separate-integrate form, such as appearance-and-relation network(ARTNet) and spatiotemporal and motion network(STM). However, with blocks stacking up, the rear part of the network has poor interpretability. To avoid this problem, we propose a novel architecture called spatial temporal relation network(STRNet), which can learn explicit information of appearance, motion and especially the temporal relation information. Specifically, our STRNet is constructed by three branches,which separates the features into 1) appearance pathway, to obtain spatial semantics, 2) motion pathway, to reinforce the spatiotemporal feature representation, and 3) relation pathway, to focus on capturing temporal relation details of successive frames and to explore long-term representation dependency. In addition, our STRNet does not just simply merge the multi-branch information, but we apply a flexible and effective strategy to fuse the complementary information from multiple pathways. We evaluate our network on four major action recognition benchmarks: Kinetics-400, UCF-101, HMDB-51, and Something-Something v1, demonstrating that the performance of our STRNet achieves the state-of-the-art result on the UCF-101 and HMDB-51 datasets, as well as a comparable accuracy with the state-of-the-art method on Something-Something v1 and Kinetics-400. 展开更多
关键词 Action recognition spatiotemporal relation multi-branch fusion long-term representation video classification
原文传递
基于GRC-MCC的k-类SVM分类算法 被引量:2
18
作者 谭馨 邓光明 《统计与决策》 CSSCI 北大核心 2020年第22期10-14,共5页
针对传统的k-类支持向量机(SVM)算法对数据进行多分类时存在的特征变量间信息重叠、模型复杂法(度M高CC、)分对类同精类度别低中这的一特系征列变问量题进,文行章赋提权出,用使得用到灰的色综关合联变聚量类(建GR立C k)-对类特SV征M变... 针对传统的k-类支持向量机(SVM)算法对数据进行多分类时存在的特征变量间信息重叠、模型复杂法(度M高CC、)分对类同精类度别低中这的一特系征列变问量题进,文行章赋提权出,用使得用到灰的色综关合联变聚量类(建GR立C k)-对类特SV征M变模量型进,行给分出类了,一并种用改复进相的关k系-数类SVM多分类算法。实证分析表明,该算法的分类效果优于传统算法。 展开更多
关键词 k-类SVM算法 灰色关联聚类 复相关系数法 多分类
在线阅读 下载PDF
Mapping of Freshwater Lake Wetlands Using Object-Relations and Rule-based Inference 被引量:1
19
作者 RUAN Renzong Susan USTIN 《Chinese Geographical Science》 SCIE CSCD 2012年第4期462-471,共10页
Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwat... Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwater wet- lands within the lake and at the mouths of neighboring rivers, due to disturbance, primarily from human activities. The main purpose of this paper was to explore a practical technology for differentiating wetlands effectively from upland types in close proximity to them. In the paper, an integrated method, which combined per-pixel and per-field classifi- cation, was used for mapping wetlands of Hongze Lake and their neighboring upland types. Firstly, Landsat ETM+ imagery was segmented and classified by using spectral and textural features. Secondly, ETM+ spectral bands, textural features derived from ETM+ Pan imagery, relative relations between neighboring classes, shape fea^xes, and elevation were used in a decision tree classification. Thirdly, per-pixel classification results from the decision tree classifier were improved by using classification results from object-oriented classification as a context. The results show that the technology has not only overcome the salt-and-pepper effect commonly observed in the past studies, but also has im- proved the accuracy of identification by nearly 5%. 展开更多
关键词 rule-based inferring object-based classification freshwater lake wetland relation feature Hongze Lake
在线阅读 下载PDF
基于窄带RCS数据的低速旋转空间目标识别研究 被引量:9
20
作者 于兴伟 张学文 +1 位作者 侯鑫宇 张超 《现代雷达》 CSCD 北大核心 2022年第7期75-81,共7页
空间运动目标RCS数据序列能反映出空间目标的姿态运动特征。针对空间运动目标RCS数据序列的变化规律,首先仿真生成低速旋转空间目标的RCS数据序列,而后采用小波变换、傅里叶变换以及RCS数据序列统计学特征提取等方法,对低速旋转空间目标... 空间运动目标RCS数据序列能反映出空间目标的姿态运动特征。针对空间运动目标RCS数据序列的变化规律,首先仿真生成低速旋转空间目标的RCS数据序列,而后采用小波变换、傅里叶变换以及RCS数据序列统计学特征提取等方法,对低速旋转空间目标的RCS数据序列进行特征提取。最后采用朴素贝叶斯、支持向量机、随机森林分类和logistic逻辑回归算法等机器学习分类算法,实现了对低速旋转空间目标RCS数据序列的识别。 展开更多
关键词 rcS数据序列 低速旋转空间目标 机器学习分类算法
原文传递
上一页 1 2 37 下一页 到第
使用帮助 返回顶部