期刊文献+
共找到2,793篇文章
< 1 2 140 >
每页显示 20 50 100
The damage of sequential explosions in reinforced concrete:Experimental and numerical investigation
1
作者 Libin Wang Zhun Bai +3 位作者 Bingwen Qian Yutao Hu Liangquan Wang Gang Zhou 《Defence Technology(防务技术)》 2025年第6期284-297,共14页
The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced ... The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced by the EPWs, experimental and numerical investigations are carried out in this paper.Firstly, a series of sequential explosion tests are conducted to provide the basic data of the crater size.Then, a numerical model is established to simulate the damage effects of sequential explosions using the meshfree method of Smoothed particle Galerkin. The effectiveness of numerical model is verified by comparison with the experimental results. Finally, based on dimensional analysis, several empirical formulas for describing the crater size are presented, including the conical crater diameter and the conical crater depth of the single explosion, the conical crater area and the joint depth of the secondary explosion. The formula for the single explosion expresses the relationship between the aspect ratio of the charge ranging from 3 to 7, the dimensionless buried depth ranging from 2 to 14 and the crater size. The formula for the secondary explosion expresses the relationship between the relative position of the two explosions and the crater size. All of data can provide reference for the design of protective structures. 展开更多
关键词 CRATER Dimensional analysis reinforced concrete Buried depth Aspect ratio Smoothed particle Galerkin
在线阅读 下载PDF
High-temperature effect on continuous glass fiber reinforced polypropylene multilayer composite and corrugated sandwich panels
2
作者 Shuyan NIE Xin PAN +2 位作者 Liming CHEN Bing DU Jie WANG 《Chinese Journal of Aeronautics》 2025年第1期607-621,共15页
The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospac... The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength. 展开更多
关键词 High-temperature effect Fiber reinforced plastic Composite structure Sandwich structure Interface delamination Strength theory
原文传递
Microscopic Modeling and Failure Mechanism Study of Fiber Reinforced Composites Embedded with Optical Fibers
3
作者 Lei Yang Jianfeng Wang +2 位作者 Minjing Liu Chunyu Chen Zhanjun Wu 《Computers, Materials & Continua》 2025年第7期265-279,共15页
Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fib... Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring. 展开更多
关键词 Fiber reinforced composites optical fiber microscopic modeling failure mechanism INTERFACE
在线阅读 下载PDF
Seismic Behavior of Squat Reinforced Concrete Shear Walls:A State-of-the-Art Review
4
作者 Ahed Habib Zaid A.Al-Sadoon +4 位作者 Murat Saatcioglu Ausamah Al Houri Mohamed Maalej Salah Al-Toubat Mazen Shrif 《Structural Durability & Health Monitoring》 2025年第3期417-439,共23页
Squat reinforced concrete(RC)shear walls are essential structural elements in low-rise buildings,valued for their high strength and stiffness.However,research on their seismic behavior remains limited,as most studies ... Squat reinforced concrete(RC)shear walls are essential structural elements in low-rise buildings,valued for their high strength and stiffness.However,research on their seismic behavior remains limited,as most studies focus on tall,slender walls,which exhibit distinct failure mechanisms and deformation characteristics.This study addresses this gap by conducting an extensive review of existing research on the seismic performance of squat RC shear walls.Experimental studies,analytical models,and numerical simulations are examined to provide insights into key factors affecting wall behavior during seismic events,including material properties,wall geometry,reinforcement detailing,and loading conditions.The review aims to support safer design practices by identifying current knowledge gaps and offering guidance on areas needing further investigation.The findings are expected to aid researchers and practitioners in refining seismic design codes,ultimately contributing to the development of more resilient squat RC shear walls for earthquake-prone regions.This research underscores the importance of improving structural resilience to enhance the safety and durability of buildings. 展开更多
关键词 Seismic behavior squat shear walls reinforced concrete earthquake resilience structural performance
在线阅读 下载PDF
A Damage Control Model for Reinforced Concrete Pier Columns Based on Pre-Damage Tests under Cyclic Reverse Loading
5
作者 Zhao-Jun Zhang Jing-Shui Zhen +3 位作者 Bo-Cheng Li De-Cheng Cai Yang-Yang Du Wen-Wei Wang 《Structural Durability & Health Monitoring》 2025年第2期327-346,共20页
To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing ... To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading. 展开更多
关键词 reinforced concrete pier cyclic reverse load pre-damage damage index displacement control
在线阅读 下载PDF
Homogenization-based numerical framework of second-phase reinforced alloys integrating strain gradient effects
6
作者 Haidong LIN Yiqi MAO Shujuan HOU 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1273-1294,共22页
The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and all... The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions. 展开更多
关键词 computational homogenization strain gradient effect strain rate inelastic dissipation second-phase reinforced alloy
在线阅读 下载PDF
Performance of multi-layer steel fiber-reinforced mortar panels with air gaps against high-velocity bullets and successive firing
7
作者 Apisit Techaphatthanakon Buchit Maho +5 位作者 Sittisak Jamnam Pochara Kruavit Manote Sappakittipakorn Phattharachai Pongsopha Gritsada Sua-iam Piti Sukontasukkul 《Defence Technology(防务技术)》 2025年第7期290-306,共17页
This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thi... This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability. 展开更多
关键词 Bullet resistance Steel fiber reinforced mortar Multilayer Impact behavior Failure mode
在线阅读 下载PDF
Research Progress on Earthquake Collapse Resistance of Reinforced Concrete Frame Structures
8
作者 Haibing Liu Junqi Lin Jinlong Liu 《Journal of Architectural Research and Development》 2025年第1期52-57,共6页
With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering ty... With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering type,although the construction technology has been relatively mature,but its earthquake collapse ability still needs to be strengthened.This paper analyzes the specific factors that affect the seismic collapse ability of reinforced concrete frame structure,summarizes the previous research results,and puts forward innovative application of fiber-reinforced polymer(FRP)composite materials,play the role of smart materials,improve the isolation and energy dissipation devices,etc.,to promote the continuous optimization of reinforced concrete frame structure design,and show better seismic performance. 展开更多
关键词 reinforced concrete frame structure Seismic performance COLLAPSE Research status
在线阅读 下载PDF
Probabilistic study of premature shear failure of slender reinforced concrete one-way slabs subjected to blast loading
9
作者 Fabio LOZANO Morgan JOHANSSON +1 位作者 Joosef LEPPANEN Mario PLOS 《Frontiers of Structural and Civil Engineering》 2025年第8期1334-1354,共21页
Blast-loaded reinforced concrete(RC)slabs should fail under a ductile bending mechanism enabling high energy absorption capacity.Hence,brittle shear failure must be avoided.However,due to the uncertainties related to ... Blast-loaded reinforced concrete(RC)slabs should fail under a ductile bending mechanism enabling high energy absorption capacity.Hence,brittle shear failure must be avoided.However,due to the uncertainties related to the materials,geometry,and resistance models,it may be difficult to predict which failure mode will prevail.This study analytically estimated the probability of premature flexural shear failure of slender RC one-way slabs subjected to blast loading considering such uncertainties and using the Monte Carlo(MC)method.The resistance models in Eurocode 2 were adopted.Specimens with and without shear reinforcement were analyzed.Bending failure was shown to be the most likely failure mode in the studied slabs.However,the probability of shear failure developing before bending failure was still relatively high,particularly for slabs without stirrups.To increase the confidence level concerning the preferred failure mechanism,the article proposes an overstrength factor to magnify the shear demand of the blast-loaded RC slab.Values of the overstrength factor for different target reliability levels were calculated.The study also found that the probability of premature shear failure increased with increasing amount of longitudinal reinforcement and decreasing slenderness.Likewise,greater impulse was found to enhance the risk for shear failure. 展开更多
关键词 reinforced concrete slabs blast loading premature shear failure model uncertainty Monte Carlo method
原文传递
Failure modes and transformation laws of reinforced concrete slabs under drop hammer impact
10
作者 Chunming Song Jiahe Zhong +3 位作者 Haotian Zhang Yuetang Zhao Zhongwei Zhang Feng Liu 《Defence Technology(防务技术)》 2025年第9期318-339,共22页
With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure m... With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined. 展开更多
关键词 reinforced concrete slab Drop hammer impact test Dynamic response Crack propagation Failure mode
在线阅读 下载PDF
Mechanical Properties and Fracture Behavior of 3D Printed Continuous Glass Fiber Reinforced PEEK Composite
11
作者 Haoliang Ding Han Yu +3 位作者 Yunfeng Zhao Chunze Yan Yusheng Shi Binling Chen 《Journal of Polymer Materials》 2025年第2期497-516,共20页
Polyether ether ketone(PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength,electrical insulation,and heat insulation.Parts manufactured using this composite an... Polyether ether ketone(PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength,electrical insulation,and heat insulation.Parts manufactured using this composite and 3D printing have promising applications in aerospace,automobile,rail transit,etc.In this paper,a high-temperature melt impregnation method was used to successfully prepare the 3D printing prepreg filaments of the aforementioned composite.In the FDM 3D printing equipment,a nozzle of high thermal conductivity and wear-resistant copper alloy and a PEEK-based carbon fiber thermoplastic composite build plate with uniform temperature control were innovatively introduced to effectively improve the quality of 3D printing.The porosity of the 3D printed samples produced from the composite prepreg filament was analyzed under different printing parameters,and the mechanical properties and fracture mechanism of the printed parts were studied.The results show that the printing layer thickness,printing speed,printing temperature and build plate temperature have varying effects on the porosity of printed parts,which in turn affects tensile strength and the interlaminar shear strength(ILSS).When the printing layer thickness is 0.4 mm,printing speed is 2 mm/s,nozzle temperature is 430℃ and build plate temperature is 150℃,the tensile strength and ILSS of the composite printed parts reach their maximum values of 463.76 and 24.95 MPa,respectively.Microscopic analysis of the fracture morphology of the tensile specimens reveals that the 3D printed CGF/PEEK composite sample has three types of fracture mode,which are single filament bundle fracture,fracture mode of delamination,and fracture failure of the sample at the cross-section.The essence of the above three kinds of fracture mode is the difference of the interface bonding force of 3D printed CGF/PEEK composites.The fracture failure at the cross-section is that the continuous glass fibers in the composite are pulled out until they break,which is the main form of the failure of the composite under tensile load.The interfacial region of the composite is prone to microscopic defects such as voids and delamination during 3D printing,which become the most vulnerable link of the composite.Understanding the relationship between voids and fracture behavior lays a foundation for defect suppression and performance improvement of subsequent printed parts. 展开更多
关键词 3D printing continuous glass fiber reinforced PEEK composite POROSITY mechanical strength fracture mechanism
在线阅读 下载PDF
Fracture evolution in steel fiber reinforced concrete(SFRC)of tunnel under static and dynamic loading based on DEM‑FDM coupling model
12
作者 Yu Chen Dongfeng Yu +4 位作者 Yixian Wang Yanlin Zhao Hang Lin Jingjing Meng Haoliang Wu 《International Journal of Coal Science & Technology》 2025年第1期186-213,共28页
The frequent or occasional impact loads pose serious threats to the service safety of conventional concrete structures in tunnel.In this paper,a novel three-dimensional mesoscopic model of steel fiber reinforced concr... The frequent or occasional impact loads pose serious threats to the service safety of conventional concrete structures in tunnel.In this paper,a novel three-dimensional mesoscopic model of steel fiber reinforced concrete(SFRC)is constructed by discrete element method.The model encompasses the concrete matrix,aggregate,interfacial transition zone and steel fibers,taking into account the random shape of the coarse aggregate and the stochastic distribution of steel fibers.It captures microscopic-level interactions among the coarse aggregate,steel fibers,and matrix.Subsequently,a comprehensive procedure is formulated to calibrate the microscopic parameters required by the model,and the reliability of the model is verified by comparing with the experimental results.Furthermore,a coupled finite difference method-discrete element method approach is used to construct the model of the split Hopkinson pressure bar.Compression tests are simulated on SFRC specimens with varying steel fiber contents under static and dynamic loading conditions.Finally,based on the advantages of DEM analysis at the mesoscopic level,this study analyzed mechanisms of enhancement and crack arrest in SFRC.It shed a light on the perspectives of interface failure process,microcrack propagation,contact force field evolution and energy analysis,offering valuable insights for related mining engineering applications. 展开更多
关键词 Steel fiber reinforced concrete Dynamic loading Contact force field ENERGY
在线阅读 下载PDF
Experimental Study of Cumulative Plastic Strain in Reinforced Sand Under Cyclic Loading
13
作者 Yalin Zhu Yanke Gao +2 位作者 Liming Wu Qian Xu Juxiang Chen 《Journal of Harbin Institute of Technology(New Series)》 2025年第4期45-54,共10页
Long-term cyclic train loading can cause settlement and deformation of the roadbed,affecting the normal operation of trains.In order to investigate the strain pattern of reinforced sandy soil under train loading,a ser... Long-term cyclic train loading can cause settlement and deformation of the roadbed,affecting the normal operation of trains.In order to investigate the strain pattern of reinforced sandy soil under train loading,a series of dynamic triaxial tests were carried out using multi-stage loading,focusing on the effects of the number of reinforcement layers,the confining pressure,and the mesh size of the geogrid on the accumulated plastic strain of reinforced sandy soil.Moreover,prediction models were proposed.The test results show that:1)The cumulative plastic strain versus vibration times of the specimens under different reinforcement layers exhibited three stages,namely,the rapid development stage,the rate transformation stage and the stability stage;2)The cumulative plastic strain decreases with increasing the number of reinforcement layers,but the magnitude of the effect of reinforcement on the cumulative plastic strain decreases with increasing the number of reinforcement layers,increasing the perimeter pressure and decreasing the mesh size of the geogrid have similar effects on the cumulative plastic strain pattern as increasing the number of reinforcement layers;3)Combined with the cumulative plastic strain law,a comprehensive model is proposed and the coefficient of determination is greater than 0.99.Furthermore,The cumulative plastic strain evolution law can be effectively predicted.The significance of parameters A,B and C is analyzed in detail.This study can provide theoretical references for further understanding of the deformation characteristics and settlement prediction of railway subgrades. 展开更多
关键词 reinforced sand dynamic triaxial test accumulated plastic strain predictive model
在线阅读 下载PDF
Application of Carbon Fiber Reinforced Polymer in Bridge Reinforcement
14
作者 Yuwei Zhang 《Journal of Architectural Research and Development》 2025年第3期76-80,共5页
Carbon fiber reinforced polymer(CFRP)is an advanced material widely used in bridge structures,demonstrating a promising application prospect.CFRP possesses excellent mechanical properties,construction advantages,and d... Carbon fiber reinforced polymer(CFRP)is an advanced material widely used in bridge structures,demonstrating a promising application prospect.CFRP possesses excellent mechanical properties,construction advantages,and durability benefits.Its application in bridge reinforcement can significantly enhance the overall performance of the reinforced bridge,thereby improving the durability and extending the service life of the bridge.Therefore,it is necessary to further explore how CFRP can be effectively applied in bridge reinforcement projects to improve the quality of such projects and ensure the safety of bridges during operation. 展开更多
关键词 Carbon fiber reinforced polymer Earthquake resistance Bridge reinforcement design
在线阅读 下载PDF
Fiber reinforced ceramic matrix composites:from the controlled fabrication to precision machining
15
作者 Shuoshuo Qu Yuying Yang +3 位作者 Peng Yao Luyao Li Yang Sun Dongkai Chu 《International Journal of Extreme Manufacturing》 2025年第6期118-150,共33页
Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospect... Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospects.However,due to the characteristics of multiphase,heterogeneity,and anisotropy,key issues such as poor adhesion,high porosity,and crack propagation urgently need to be addressed in the fabrication and machining of FRCMCs.With the increasing demand for FRCMCs parts,high-quality and reliable design and fabrication,performance evaluation,and precision manufacturing have become a series of hot issues.There is a lack of systematic review in capturing the current research status and development direction of FRCMCs fabrication and machining.This research aims to comprehensively review and critically evaluate the existing understanding of the fabrication and machining of FRCMCs.This study can provide scientists with a deeper understanding of the shape control mechanism of FRCMCs fabrication and machining,the theoretical basis of material synchronous removal,machining performance,and development direction.Firstly,the basic characteristics and application background of FRCMCs are introduced.Secondly,by comparing and analyzing the typical fabrication process of FRCMCs,the advantages,disadvantages,and performance evaluation of different processes are comprehensively evaluated.Thirdly,the material removal mechanisms and machining performance evaluation standards of traditional mechanical machining technologies(drilling,milling,grinding)and non-traditional mechanical machining technologies(ultrasonic,laser,water jet,discharge,wire saw,and multi-field hybrid machining)are discussed and analyzed.Finally,the challenges,development trends,and prospects faced by FRCMCs in the fields of fabrication,machining,and application are analyzed.This study not only elucidates the basic processes and key difficulties in the fabrication of FRCMCs,but also provides valuable insights for low-damage machining. 展开更多
关键词 fiber reinforced ceramic matrix composites removal mechanism traditional mechanical machining technologies non-traditional mechanical machining technologies
在线阅读 下载PDF
In-situ Si particle-reinforced joints of hypereutectic Al−60Si alloys by ultrasonic-assisted soldering 被引量:2
16
作者 Yuan-xing LI Xiang-bo ZHENG +3 位作者 Chao-zheng ZHAO Zong-tao ZHU Yu-jie BAI Hui CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第1期77-90,共14页
To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si parti... To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si particle reinforcement was obtained.The oxide film of Al−60Si alloy at the interface was identified by transmission electron microscopy(TEM)analysis as amorphous Al_(2)O_(3).The oxide of Si particles in the base metal was also alumina.The oxide film of Al−60Si alloy was observed to be removed by ultrasonic vibration instead of holding treatment.Si particle-reinforced joints(35.7 vol.%)were obtained by increasing the ultrasonication time.The maximum shear strength peaked at 99.5 MPa for soldering at 330℃with an ultrasonic vibration time of 50 s.A model of forming of Si particles reinforced joint under the ultrasound was proposed,and ultrasonic vibration was considered to promote the dissolution of Al and migration of Si particles. 展开更多
关键词 hypereutectic Al−60Si alloy ultrasonic-assisted soldering Si particle reinforcement Sn−9Zn solder
在线阅读 下载PDF
Flexural Performance of UHPC-Reinforced Concrete T-Beams:Experimental and Numerical Investigations 被引量:1
17
作者 Guangqing Xiao Xilong Chen +2 位作者 Lihai Xu Feilong Kuang Shaohua He 《Structural Durability & Health Monitoring》 2025年第5期1167-1181,共15页
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated... This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders. 展开更多
关键词 UHPC thin layer T-BEAM REINFORCEMENT bending performance numerical simulation
在线阅读 下载PDF
Preparation and Brazing Performance of Low-Silver SnAgCu Composite Solder Reinforced by Nickel Coated Al_(2)O_(3)
18
作者 Wang Bingying Zhang Keke +4 位作者 Fan Yuchun Wu Jinna Guo Limeng Wang Huigai Wang Nannan 《稀有金属材料与工程》 北大核心 2025年第4期854-861,共8页
Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepar... Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepared using traditional casting method.The result shows that the nickel coating layer is continuous with uneven thickness.The interface between nickel and aluminum oxide exhibits a metallurgical bonding with coherent interface relationship.The strength,toughness and wettability of the SAC105 solder on the substrate are improved,while the conductivity is not decreased significantly.The fracture mode of composites transitions from a mixed toughness-brittleness mode to a purely toughness-dominated mode,characterized by many dimples.The prepared composite brazing material was made into solder paste for copper plate lap joint experiments.The maximum shear strength is achieved when the doping amount was 0.3wt%.The growth index of intermetallic compound at the brazing interface of Ni/Al_(2)O_(3)reinforced SAC105 composite solder is linearly fitted to n=0.39,demonstrating that the growth of intermetallic compound at the interface is a combined effect of grain boundary diffusion and bulk diffusion. 展开更多
关键词 composite solder reinforcement phase polymerization reaction hydrothermal method INTERFACE
原文传递
Study on static characteristics of a novel prestress-reinforced railway subgrade
19
作者 Junli Dong Fang Xu +3 位作者 Qishu Zhang Wuming Leng Yafeng Li Qi Yang 《Railway Engineering Science》 2025年第1期108-126,共19页
Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring... Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring elements)is technically significant for the rational design of prestressed subgrade.A three-dimensional finite element model was established and verified based on a novel static model test and utilized to systematically analyze the influence of prestress levels and reinforcement modes on the reinforcement effect of the subgrade.The results show that the PRCs provide additional confining pressure to the subgrade through the diffusion effect of the prestress,which can therefore effectively improve the service performance of the subgrade.Compared to the unreinforced conventional subgrades,the settlements of prestressreinforced subgrades are reduced.The settlement attenuation rate(Rs)near the LPPs is larger than that at the subgrade center,and increasing the prestress positively contributes to the stability of the subgrade structure.In the multi-row reinforcement mode,the reinforcement effect of PRCs can extend from the reinforced area to the unreinforced area.In addition,as the horizontal distance from the LPPs increases,the additional confining pressure converted by the PSBs and LPPs gradually diminishes when spreading to the core load bearing area of the subgrade,resulting in a decrease in the Rs.Under the singlerow reinforcement mode,PRCs can be strategically arranged according to the local areas where subgrade defects readily occurred or observed,to obtain the desired reinforcement effect.Moreover,excessive prestress should not be applied near the subgrade shoulder line to avoid the shear failure of the subgrade shoulder.PRCs can be flexibly used for preventing and treating various subgrade defects of newly constructed or existing railway lines,achieving targeted and classified prevention,and effectively improving the bearing performance and deformation resistance of the subgrade.The research results are instructive for further elucidating the prestress reinforcement effect of PRCs on railway subgrades. 展开更多
关键词 Prestressed subgrade Static characteristic Reinforcement effect Reinforcement mode SETTLEMENT Numerical simulation
在线阅读 下载PDF
Experimental study on the buckling of composite cylinders with reinforced circular hole under hydrostatic pressure
20
作者 Zhun Li Xinhu Zhang +3 位作者 Kechun Shen Jing Liu Jian Zhang Guang Pan 《Defence Technology(防务技术)》 2025年第2期231-247,共17页
In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with t... In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity. 展开更多
关键词 Composite cylindrical shell Circular hole Reinforcing structure BUCKLING Hydrostatic pressure
在线阅读 下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部