期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Reifenberg区域的一种光滑化方法
1
作者 洪广浩 王立河 《工程数学学报》 CSCD 北大核心 2011年第1期50-54,共5页
Reifenberg区域是在其边界上的任意一点和任意尺度下,都满足一种局部平坦条件的区域.我们通过考虑磨光后的区域特征函数的上水平集的途径,提供了Reifenberg区域的一种光滑化方法,包括从区域的内部逼近和外部逼近.
关键词 reifenberg区域 磨光 水平集
在线阅读 下载PDF
W^(m,p(t,x))-Estimate for a Class of Higher-Order Parabolic Equations with Partially BMO Coefficients
2
作者 TIAN Hong HAO Shuai ZHENG Shenzhou 《Journal of Partial Differential Equations》 CSCD 2024年第2期198-234,共37页
We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is ma... We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is mainly assumed that the coefficients are allowed to be merely measurable in one of the spatial variables and have a small BMO quasi-norm in the other variables at a sufficiently small scale,while the boundary of the underlying domain belongs to the so-called Reifenberg flatness.This is a natural outgrowth of Dong-Kim-Zhang’s papers[1,2]from the W^(m,p)-regularity to the W^(m,p(t,x))-regularity for such higher-order parabolic equations with merely measurable coefficients with Reifenberg flat domain which is beyond the Lipschitz domain with small Lipschitz constant. 展开更多
关键词 A higher-order parabolic equation Sobolev spaces with variable exponents partially BMO quasi-norm reifenberg flat domains log-Hölder continuity
原文传递
Boundary Lipschitz Regularity of Solutions for Semilinear Elliptic Equations in Divergence Form
3
作者 Jing Qi LIANG Li He WANG Chun Qin ZHOU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第2期193-208,共16页
In this paper,we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary.... In this paper,we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary.If the domain satisfies C1,Dinicondition at a boundary point,and the nonhomogeneous term satisfies Dini continuity condition and Lipschitz Newtonian potential condition,then the solution is Lipschitz continuous at this point.Furthermore,we generalize this result to Reifenberg C1,Dinidomains. 展开更多
关键词 Boundary Lipschitz regularity semilinear elliptic equation Dini condition reifenberg domain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部