期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reshapeable,rehealable and recyclable sensor fabricated by direct ink writing of conductive composites based on covalent adaptable network polymers 被引量:2
1
作者 Xu He Yuchen Lin +6 位作者 Yuchen Ding Arif M Abdullah Zepeng Lei Yubo Han Xiaojuan Shi Wei Zhang Kai Yu 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第1期94-107,共14页
Covalent adaptable network(CAN)polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable,rehealable,and fully recyclable electronics.On the other hand,3D printing as a deterministic man... Covalent adaptable network(CAN)polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable,rehealable,and fully recyclable electronics.On the other hand,3D printing as a deterministic manufacturing method has a significant potential to fabricate electronics with low cost and high design freedom.In this paper,we incorporate a conductive composite consisting of polyimine CAN and multi-wall carbon nanotubes into direct-ink-writing 3D printing to create polymeric sensors with outstanding reshaping,repairing,and recycling capabilities.The developed printable ink exhibits good printability,conductivity,and recyclability.The conductivity of printed polyimine composites is investigated at different temperatures and deformation strain levels.Their shape-reforming and Joule heating-induced interfacial welding effects are demonstrated and characterized.Finally,a temperature sensor is 3D printed with defined patterns of conductive pathways,which can be easily mounted onto 3D surfaces,repaired after damage,and recycled using solvents.The sensing capability of printed sensors is maintained after the repairing and recycling.Overall,the 3D printed reshapeable,rehealable,and recyclable sensors possess complex geometry and extend service life,which assist in the development of polymer-based electronics toward broad and sustainable applications. 展开更多
关键词 bond exchange reactions polyimine covalent adaptable networks direct ink writing rehealable electronics RECYCLABILITY
在线阅读 下载PDF
Monolithic polyimine vitrimer/graphene aerogel composites
2
作者 Jinye Zhang Shichang Luo +4 位作者 Yunlong Ma Ruiyang Li Yinghua Jin Li Qiu Wei Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期529-533,共5页
Graphene-polymer composites have attracted great attention as sensing materials due to their tailorable electrical conductivity, physicochemical properties, and sensitivity to geometric and functional changes.Herein, ... Graphene-polymer composites have attracted great attention as sensing materials due to their tailorable electrical conductivity, physicochemical properties, and sensitivity to geometric and functional changes.Herein, we report the first example of cylindrical monolithic polyimine vitrimer/graphene composites with excellent mechanical, compressive, rehealable and recyclable, and piezoresistive properties via simple infiltration of polymer monomers into the pores of graphene aerogel followed by thermal curing. The composites exhibit excellent durable compressibility(negligible reduction in the compression properties even after 3000 consecutive compression cycles), rapid recovery to the original size upon stress released,high compressive strength(up to 1.2 MPa), and high conductivity(up to 79 S/m). Excellent piezoresistive properties were observed, displaying consistent and reliable change of the electrical resistance with the compression ratio. Furthermore, rehealing with ~100% recovery of the compressive strength and electric conductivity was achieved under mild rehealing conditions, which is highly desired but has rarely been reported for electronic materials. The facile strategy for fabrication of rehealable monolithic polymer/GAs can open new possibilities for the sustainable development of composites with high electrical conductivity for various applications such as sensing, health monitoring, and movement detection. 展开更多
关键词 Vitrimer Graphene aerogel Polyimine rehealable PIEZORESISTIVE MONOLITHIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部