期刊文献+
共找到4,818篇文章
< 1 2 241 >
每页显示 20 50 100
Regulating the crosstalk between macrophage and fibroblast:potential mechanisms of traditional Chinese medicine in treating rheumatoid arthritis
1
作者 Xiao-Yu Bi Huan Pei +4 位作者 Meng-Qiu Shao Meng-Xi Zhao Wei-Bo Wen Huan-Tian Cui Tao Chen 《Integrative Medicine Discovery》 2025年第17期1-3,共3页
Rheumatoid arthritis(RA)is a common chronic autoimmune disease characterized by joint pain,swelling and dysfunction[1].According to epidemiologic statistics,the incidence of RA is 1%–2%,and in severe cases,it can dev... Rheumatoid arthritis(RA)is a common chronic autoimmune disease characterized by joint pain,swelling and dysfunction[1].According to epidemiologic statistics,the incidence of RA is 1%–2%,and in severe cases,it can develop into joint deformity and disability,which brings a heavy burden to the family and society[2].However,the pathogenesis of RA is complex and involves multiple cellular interactions,which increases the difficulty of curing RA.Current therapeutic options,such as disease-modifying antirheumatic drugs,non-steroidal anti-inflammatory drugs,and biologics,still face the challenge of relapse after drug discontinuation[3,4].Therefore,the pathogenesis of RA needs to be analyzed in depth to break through the existing therapeutic bottlenecks and promote the iterative innovation of individualized diagnosis and treatment. 展开更多
关键词 joint pain MACROPHAGE rheumatoid arthritis ra regulating crosstalk FIBROBLAST rheumatoid arthritis chronic autoimmune disease traditional chinese medicine
暂未订购
Characterization of Purged Gas-Liquid Two-Phase Flow in a Molten Salt Regulating Valve
2
作者 Shuxun Li Jianwei Wang +2 位作者 Tingjin Ma Guolong Deng Wei Li 《Fluid Dynamics & Materials Processing》 2025年第4期959-988,共30页
In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffecti... In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process. 展开更多
关键词 Molten salt regulating valve liquid purge critical velocity two-phase flow characteristics numerical simulation
在线阅读 下载PDF
Functional differences between two homologous MYB transcription factors in regulating fruit color in octoploid strawberry(Fragaria×ananassa)
3
作者 Lixia Sheng Yuqi Zhang +2 位作者 Xiaoke Yang Yujia Yin Jianqiang Yu 《Journal of Integrative Agriculture》 2025年第9期3484-3493,共10页
Anthocyanins are the flavonoid pigments responsible for vibrant fruit and flower colors,and they also play key roles in both plant physiology and human health.MYB transcription factors are crucial regulators of anthoc... Anthocyanins are the flavonoid pigments responsible for vibrant fruit and flower colors,and they also play key roles in both plant physiology and human health.MYB transcription factors are crucial regulators of anthocyanin biosynthesis and accumulation,but the functional differences of homologous MYB transcription factors in regulating anthocyanin content are still unclear.In strawberry(Fragaria×ananassa),FaMYB44.1 and FaMYB44.3 are highly homologous MYB transcription factors localized in the nucleus and can be significantly induced by weak light.However,they differ in their effects on anthocyanin accumulation in the fruits.FaMYB44.1 inhibits anthocyanin synthesis by transcriptionally suppressing FaF3H,which is essential for anthocyanin regulation,in the‘BeniHoppe'and‘JianDe-Hong'strawberry varieties.In contrast,FaMYB44.3 does not affect anthocyanin levels.This study provides a comprehensive overview of the roles of FaMYB44.1 and FaMYB44.3 in anthocyanin regulation in strawberry fruits.By elucidating the molecular mechanisms underlying their regulation,this study enhances our understanding of how the interactions between genetic and environmental factors control fruit pigmentation and enhance the nutritional value of the fruit. 展开更多
关键词 STRAWBERRY FaMYB44.1 FaMYB44.3 FaF3H ANTHOCYANIN transcriptional regulation
在线阅读 下载PDF
Pulsed electric current treatment: from regulating non-metallic inclusions to inhibiting submerged entry nozzle clogging
4
作者 Wen-wen Yu Jin-gang Qi Heng Cui 《Journal of Iron and Steel Research International》 2025年第4期833-848,共16页
Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,... Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel. 展开更多
关键词 Pulsed electric current Non-metallic inclusion REGULATION Submerged entry nozzle CLOGGING
原文传递
Sigma factor 70 RpoD contributes to virulence by regulating cell motility,oxidative stress tolerance,and manipulating the expression of hrpG and hrpX in Xanthomonas oryzae pv.oryzae
5
作者 Zhizhou Xu Guichun Wu +6 位作者 Bo Wang Baodian Guo Cong Sheng Yangyang Zhao Bao Tang Yancun Zhao Fengquan Liu 《Journal of Integrative Agriculture》 2025年第5期1844-1859,共16页
Xanthomonas oryzae pv.oryzae(Xoo)causes bacterial blight in rice,which reduces crop yield and leads to significant economic losses.Bacterial sigma(σ)factors are highly specialized proteins that allow RNA polymerase t... Xanthomonas oryzae pv.oryzae(Xoo)causes bacterial blight in rice,which reduces crop yield and leads to significant economic losses.Bacterial sigma(σ)factors are highly specialized proteins that allow RNA polymerase to recognize and bind to specific promoters.σ^(70) factors also regulate the expression of genes involved in stress response and virulence.However,the role of RpoD in Xoo is still unclear.In this study,we found thatσ^(70) factor RpoD is quite conservative among phytopathogenic bacteria,especially in Xanthomonas sp.In Xoo,PXO_RpoD plays an important role in oxidative stress tolerance and cell motility,as well as being essential for full virulence.Cleavage under targets and tagmentation(CUT&Tag)analyses indicated that RpoD mediates the type three secretion system(T3SS)by regulating the regulation of hrpG and hrpX.By performing bacterial one-hybrid and electrophoretic mobility assay(EMSA),we observed that RpoD directly bound to the promoters of hrpG and hrpX.Collectively,these results demonstrate the transcriptional mechanism and pathogenic functions of RpoD in regulating cell motility and oxidative stress response,providing novel insights into potential targets for disease control. 展开更多
关键词 Oryza sativa sigma factor PATHOGENICITY transcriptional regulation typeⅢsecretion system
在线阅读 下载PDF
The B-type response regulator ZmRR5 controls maize kernel size by regulating BETL development
6
作者 Menglin Pu Bohui Wang +11 位作者 Chao Zhou Youqiang Li Mingfei Sun Guangming Zheng Yuejia Zhang Jiawen Wu Jun Li Xiaofei He Zhiming Zhang Haiping Ding Xiansheng Zhang Xiangyu Zhao 《The Crop Journal》 2025年第3期792-804,共13页
Maize(Zea mays L.)is one of the world's most important staple crops,and is used for manufacturing food,feed,and industrial products.A key factor in maize yield is the grain weight,which directly influences product... Maize(Zea mays L.)is one of the world's most important staple crops,and is used for manufacturing food,feed,and industrial products.A key factor in maize yield is the grain weight,which directly influences productivity.In this study,we revealed the role of smk23 in maize kernel development.The ethyl methanesulfonate mutant smk23 is characterized by substantially reduced kernel weight.Through map-based cloning,smk23 was found to be located on Chr5 and encode a putative B-type response regulator,Zm RR5.A change from G to A occurs in the coding sequence of Zm RR5,resulting in the early termination of smk23.In Arabidopsis,B-type response regulators are involved in cytokinin signaling.Histological analysis and in situ hybridization of the mutant revealed abnormal endosperm development,particularly in the basal endosperm transfer layer(BETL),a specialized tissue critical for nutrient transport from the maternal tissues to the developing kernel.Zm RR5 positively regulates key genes involved in BETL development and function,including MRP1 and TCRR1.Furthermore,RNA sequencing revealed that several genes closely linked to BETL development,including BETL2,MEG1,and MN1,were significantly downregulated in smk23.These genes are essential for nutrient transport,tissue development and signal transduction.In addition,haploid analysis of Zm RR5 revealed natural variations(Hap 2)that may contribute to the increased kernel yield.Disruption of Zm RR5 function in smk23 leads to defects in BETL development,impairing its ability to transport nutrients,and ultimately resulting in a smaller kernel size.This study provides new insights into the molecular mechanisms through which Zm RR5 regulates maize kernel development and offers potential strategies for improving grain yield. 展开更多
关键词 Maize yield Cytokinin B-type response regulator ENDOSPERM BETL
在线阅读 下载PDF
Regulating crystallization and retarding oxidation in Sn-Pb perovskite via 1D cation engineering for high performance all-perovskite tandem solar cells
7
作者 Ranran Liu Xin Zheng +10 位作者 Zaiwei Wang Miaomiao Zeng Chunxiang Lan Shaomin Yang Shangzhi Li Awen Wang Min Li Jing Guo Xuefei Weng Yaoguang Rong Xiong Li 《Journal of Energy Chemistry》 2025年第1期646-652,共7页
All-perovskite tandem solar cells have the potential to surpass the theoretical efficiency limit of single junction solar cells by reducing thermalization losses.However,the challenges encompass the oxidation of Sn^(2... All-perovskite tandem solar cells have the potential to surpass the theoretical efficiency limit of single junction solar cells by reducing thermalization losses.However,the challenges encompass the oxidation of Sn^(2+)to Sn^(4+)and uncontrolled crystallization kinetics in Sn-Pb perovskites,leading to nonradiative recombination and compositional heterogeneity to decrease photovoltaic efficiency and operational stability.Herein,we introduced an ionic liquid additive,1-ethyl-3-methylimidazolium iodide (EMIMI) into Sn-Pb perovskite precursor to form low-dimensional Sn-rich/pure-Sn perovskites at grain boundaries,which mitigates oxidation of Sn^(2+)to Sn^(4+)and regulates the film-forming dynamics of Sn/Pb-based perovskite films.The optimized single-junction Sn-Pb perovskite devices incorporating EMIMI achieved a high efficiency of 22.87%.Furthermore,combined with wide-bandgap perovskite sub-cells in tandem device,we demonstrate 2-terminal all-perovskite tandem solar cells with a power conversion efficiency of 28.34%,achieving improved operational stability. 展开更多
关键词 All-perovskite tandem solar cells Sn-Pb perovskite 1D Regulated crystallization ANTIOXIDATION
在线阅读 下载PDF
Regulating phase ratios and mechanical properties of polysynthetic twinned TiAl single crystals via annealing
8
作者 L.W.Kong Z.B.Xing +8 位作者 F.R.Chen Q.Q.Yin L.Pang X.Liu Y.Shu P.Li Z.X.Qi G.Chen Y.J.Tian 《Journal of Materials Science & Technology》 2025年第9期223-236,共14页
Polysynthetic twinned(PST)TiAl single crystal specifically refers to a fully lamellar TiAl single crystal with parallel phase interfaces and twin interfaces grown by directional solidification.In this paper,PST single... Polysynthetic twinned(PST)TiAl single crystal specifically refers to a fully lamellar TiAl single crystal with parallel phase interfaces and twin interfaces grown by directional solidification.In this paper,PST single crystals with different phase ratios are obtained by annealing at specific temperatures and holding times.The results show that the diffusion rates of Ti and Al elements at various temperatures directly trigger and propel the surface recrystallization and variation in the internal phase ratio.When the temperature is lower than 1448 K,the diffusion rate of Ti is obviously higher than that of Al,which causes one denseα_(2)recrystallized layer to form on the surface of TiAl single crystals.Meanwhile,as more Ti elements migrate to the surface,theα_(2)phase ratio inside the TiAl single crystal thereby decreases.When the temperature exceeds 1448 K,the diffusion rate of Al gradually reverses to exceed that of Ti,which forms the surface sandwiched recrystallization dominated byγphase and simultaneously increasesα_(2)phase ratio inside the TiAl single crystal.The variation in the two-phase ratio directly induces a significant change in the lamellae thickness,which exhibits different tensile behaviors of PST-TiAl single crystal.When theα_(2)phase content is less than 20%,widerγlamellae make it easier for dislocations to be activated within its lamellae and continuously move across theγ/α_(2)interfaces,thereby obtaining better tensile plasticity.As theα_(2)phase content exceeds 30%,finerγlamellae inhibit the dislocation initiation,resulting in the fracture occurrence of TiAl single crystal before yielding.No matter how the phase ratio changes,the crack preferentially initiates withinα_(2)lamellae.However,the crack propagation follows different paths based on variousγlamella thicknesses.The fracture mode of PST-TiAl single crystal also changes from shear fracture along slip bands within theγlamella to brittle fracture along the{1¯100}planes withinα_(2)lamella. 展开更多
关键词 PST-TiAl single crystal Surface recrystallization Phase ratio regulation Diffusion rate Fracture mode
原文传递
Regulating WO_(x) coordination environment improves proton transfer for catalytic amine regeneration in CO_(2)capture
9
作者 Zanbu Geng Yang Yang +5 位作者 Wenqing Xu Yixi Wang Yiren Li Chaoqun Li Juan Liu Tingyu Zhu 《Green Energy & Environment》 2025年第5期1085-1095,共11页
Catalyst-aided regeneration is a promising method for reducing the high regeneration energy consumption of amine-based CO_(2)capture technologies.However,the intrinsic relationship between the properties of the acidic... Catalyst-aided regeneration is a promising method for reducing the high regeneration energy consumption of amine-based CO_(2)capture technologies.However,the intrinsic relationship between the properties of the acidic sites and their catalytic activity is controversial.In this study,a series of W-based catalysts supported by ZrTiO_(x)were synthesised,and the effects of the intensity,distribution,and type of acid sites were systematically investigated by quantitatively regulating the acidic site properties.The results indicate stronger acidic sites play a more important role in the catalytic reaction.Moreover,the catalysts showed excellent performance only if the Br?nsted acid sites(BASs)and Lewis acid sites(LASs)coexisted.During the catalytic reaction,the BASs facilitated deprotonation,and the LASs promoted the decomposition of carbamates.The ratio of BASs to LASs(B/L)was a critical factor for catalytic activity,wherein optimal performance was achieved when the B/L ratio was close to 1.The 10%HPW/ZrTiO_(x)composite performed better than WO_(3)/ZrTiO_(x)and HSiW/ZrTiO_(x)because it had a stronger acid intensity and a suitable B/L ratio.As a result,the relative heat duty was reduced by 47%compared to 30%aqueous MEA,and the maximum CO_(2)desorption rate was increased by 83%.The Bader charge indicated that the W atoms of HPW/ZrTiO_(x)lost more electrons(0.18)than those of WO_(3)/ZrTiO_(x),which can weaken the O±H bond energy.Consequently,the calculated deprotonation energy is as low as 257 kJ mol^(-1)for HPW/ZrTiO_(x). 展开更多
关键词 CO_(2)capture Catalytic CO_(2)desorption Regulate acid site AMINE REGENERATION
在线阅读 下载PDF
Cloning of qHD8^(BAS),a Quantitative Trait Locus Regulating Heading Date in Rice
10
作者 ZHANG Zhengjiu BIAN Ying +3 位作者 YANG Ruoju ZHANG Xiaobo GONG Junyi FAN Jiongjiong 《Rice science》 2025年第3期283-286,I0005-I0011,共11页
Heading date is one of the most important agronomic traits that directly affect rice yield and determines the regional adaptability in specific growing environments.As a short-day plant,rice can grow under long-day(LD... Heading date is one of the most important agronomic traits that directly affect rice yield and determines the regional adaptability in specific growing environments.As a short-day plant,rice can grow under long-day(LD)conditions due to the synergistic regulation of many photosensitive genes.Using a set of chromosome segment substitution lines(CSSLs)with the indica cultivar Huanghuazhan(HHZ)as the recipient parent and Basmati Surkh 89-15(BAS)as the donor parent,we identified a QTL locus. 展开更多
关键词 chromosome segment substitution lines cssls agronomic traits identified qtl locus indica cultivar quantitative trait locus synergistic regulation many photosensitive genesusing heading date CLONING
在线阅读 下载PDF
Controllable large-scale processing of temperature regulating sheath-core fibers with high-enthalpy for thermal management 被引量:2
11
作者 Ziye Chen Zexu Hu +4 位作者 Shining Chen Senlong Yu Liping Zhu Hengxue Xiang Meifang Zhu 《Nano Materials Science》 EI CAS CSCD 2024年第3期337-344,共8页
Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at ... Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF_(s) with excellent thermal and mechanical properties. Here, polyamide 6(PA6) based TRF_(s) with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF(TRF_(sc)) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials(ssPCM),dendritic silica@polyethylene glycol(SiO_(2)@PEG). With the aid of the sheath structure, the filling content of SiO_(2)@PEG can reach 30 %, so that the enthalpy of the TRF_(s) can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93℃. In addition, the mechanical strength of the prepared TRF_(sc) reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc. 展开更多
关键词 Thermal management Hybrid fibers Polyamides Bicomponent melt spinning Temperature regulating fibers
在线阅读 下载PDF
Dynamic plugging regulating strategy of pipeline robot based on reinforcement learning
12
作者 Xing-Yuan Miao Hong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期597-608,共12页
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p... Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process. 展开更多
关键词 Pipeline isolation plugging robot Plugging-induced vibration Dynamic regulating strategy Extreme learning machine Improved sparrow search algorithm Modified Q-learning algorithm
原文传递
New advances of adiponectin in regulating obesity and related metabolic syndromes 被引量:7
13
作者 Yanqi Han Qianwen Sun +7 位作者 Wei Chen Yue Gao Jun Ye Yanmin Chen Tingting Wang Lili Gao Yuling Liu Yanfang Yang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期623-638,共16页
Obesity and related metabolic syndromes have been recognized as important disease risks,in which the role of adipokines cannot be ignored.Adiponectin(ADP)is one of the key adipokines with various beneficial effects,in... Obesity and related metabolic syndromes have been recognized as important disease risks,in which the role of adipokines cannot be ignored.Adiponectin(ADP)is one of the key adipokines with various beneficial effects,including improving glucose and lipid metabolism,enhancing insulin sensitivity,reducing oxidative stress and inflammation,promoting ceramides degradation,and stimulating adipose tissue vascularity.Based on those,it can serve as a positive regulator in many metabolic syndromes,such as type 2 diabetes(T2D),cardiovascular diseases,non-alcoholic fatty liver disease(NAFLD),sarcopenia,neurodegenerative diseases,and certain cancers.Therefore,a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors.The modulation of ADP genes,multimerization,and secretion covers the main processes of ADP generation,providing a comprehensive orientation for the development of more appropriate therapeutic strategies.In order to have a deeper understanding of ADP,this paper will provide an all-encompassing review of ADP. 展开更多
关键词 ADIPONECTIN OBESITY Metabolic syndrome REGULATION
暂未订购
Regulating^(*)COOH intermediate via amino alkylation engineering for exceptionally effective photocatalytic CO_(2) reduction 被引量:2
14
作者 Chengcheng Chen Qiaoyu Zhang +3 位作者 Fangting Liu Zhengguo Zhang Qiong Liu Xiaoming Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期282-291,共10页
Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ... Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%. 展开更多
关键词 Polymeric carbonnitride Regulate intermediate Photocatalytic CO_(2)reduction Amino alkylation ^(*)COOH adsorption
在线阅读 下载PDF
The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review 被引量:1
15
作者 Jie Ma Jianxiang Wang +3 位作者 Jianhua Yuan Xiao Liu Yun Yang Fei Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第11期214-225,共12页
Gas adsorption remains an attractive area of research.The hierarchical structure can reduce diffusion limitations and facilitate molecular transport,while acid sites can be used as adsorption sites.These make zeolites... Gas adsorption remains an attractive area of research.The hierarchical structure can reduce diffusion limitations and facilitate molecular transport,while acid sites can be used as adsorption sites.These make zeolites widely used in the field of gas adsorption.How to obtain zeolite adsorbents with better adsorption properties by modulating the hierarchical structure and acid sites is a pressing issue nowadays.This review highlights the strategies to modulate the hierarchical structure as well as the acid sites;and then explains how these strategies are achieved.The mechanism of zeolite adsorption on gases is then described in terms of these two properties.Lastly,the adsorption properties of zeolites for certain gases under specific conditions are summarised.An outlook of zeolite hierarchical structures and acid site modulation strategies is given. 展开更多
关键词 ZEOLITE Regulation strategy Hierarchical structure Acid sites Gas adsorption
原文传递
Correlation Between Granulomatous Mastitis and Autoimmune Function and the Immuneregulating Role of Traditional Chinese Medicine 被引量:2
16
作者 Jiangshan Yuan Xufeng Cheng +1 位作者 Beibei Wang Zepeng Wang 《Chinese Medicine and Natural Products》 CAS 2024年第3期88-92,共5页
Granulomatous mastitis(GM)is a benign granulomatous condition,and its pathogenesis may be related to autoimmune disorders.Cellular immunity,humoral immunity,immunoglobulins,and complement could all play a role in the ... Granulomatous mastitis(GM)is a benign granulomatous condition,and its pathogenesis may be related to autoimmune disorders.Cellular immunity,humoral immunity,immunoglobulins,and complement could all play a role in the disease process,showing certain clinical patterns.Corticosteroids can quickly control disease progression,and immunosuppressants can be used for complex and refractory GM cases.In traditional Chinese medicine(TCM),“healthy qi”is similar to immune system function.For GM with deficient healthy qi,TCM treatments such as internal and external herbal applications can help regulate immune function and shorten disease duration by staged and TCM treatment,regulating viscera,reinforcing healthy qi,and eliminating pathogenic factors. 展开更多
关键词 GRANULOMATOUS MASTITIS TCM immune regulation TCM treatment staged treatment
原文传递
Role of Multi-scale Hierarchical Structures in Regulating Wetting State and Wetting Properties of Structured Surfaces
17
作者 Yue Jiang Xinyi Li +5 位作者 Zhichao Ma Zhihui Zhang Cuie Wen Zhonghao Jiang Nan Lin Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1347-1359,共13页
Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theor... Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf. 展开更多
关键词 Hierarchical structure Wetting state regulation Wetting transition SUPERHYDROPHOBICITY SUPERHYDROPHILICITY
在线阅读 下载PDF
Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle
18
作者 Kuan Deng Fei Yang +8 位作者 Zhi-Qi Cheng Bi-Wen Ren Hua Liu Jiao Chen Meng-Yao She Le Yu Xiao-Gang Liu Hai-Tao Feng Jian-Li Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期315-320,共6页
Dual-state emission(DSE)molecules displayed conspicuous fluorescent performance both in solid and solution states.However,the construction of DSE molecules and the regulation of their emission wavelengths remains a gr... Dual-state emission(DSE)molecules displayed conspicuous fluorescent performance both in solid and solution states.However,the construction of DSE molecules and the regulation of their emission wavelengths remains a great challenge.Based on the structure-function relationship of quinolinonitrile-type fluorophores,this work proposed a feasible strategy for modulating their fluorescent properties into DSE via limiting the torsion angle between the quinoline ring and C=C bond in the range of 4.7°to 30°.Based on this strategy,53 compounds were obtained which displayed tunable emission wavelengths from^(3)97 nm to 740 nm in solid-state and from 360 nm to 672 nm in solution.The feasibility of the strategy was supported by a series of theoretical calculations,optical characterizations,and crystal analysis,suggesting the compounds have great potential in imaging living cells and tissues with desired wavelengths. 展开更多
关键词 FLUORESCENCE Dual-state emission Structure-function relationship Wavelength regulation Fluorescent imaging
原文传递
Sirtuin 1 in regulating the p53/glutathione peroxidase 4/gasdermin D axis in acute liver failure
19
作者 Swati Katoch Vikram Patial 《World Journal of Gastroenterology》 SCIE CAS 2024年第34期3850-3855,共6页
In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver fa... In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver failure(ALF).ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage,often posing a high risk of mortality.The predominant form of hepatic cell death in ALF involves apoptosis,ferroptosis,autophagy,pyroptosis,and necroptosis.Glutathione peroxidase 4(GPX4)inhibition sensitizes the cell to ferroptosis and triggers cell death,while Gasdermin D(GSDMD)is a mediator of pyroptosis.The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway,bridging the gap between the two processes.The inhibition of p53 elevates the levels of GPX4,reducing the levels of inflammatory and liver injury markers,ferroptotic events,and GSDMDN protein levels.Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction.SIRT1 is a NAD-dependent deacetylase,and its activation attenuates liver injury and inflammation,accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF.SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation,attenuating LPS/D-GalN-induced ALF. 展开更多
关键词 Acute liver failure Ferroptosis Gasdermin D PYROPTOSIS P53 Silent information regulator sirtuin 1
暂未订购
上一页 1 2 241 下一页 到第
使用帮助 返回顶部