Taxation,the primary source of fiscal revenue,has profound implications in guiding resource allocation,promoting economic growth,adjusting social wealth distribution,and enhancing cultural influence.The development of...Taxation,the primary source of fiscal revenue,has profound implications in guiding resource allocation,promoting economic growth,adjusting social wealth distribution,and enhancing cultural influence.The development of e-taxation provides a enhanced security for taxation,but it still faces the risk of inefficiency and tax data leakage.As a decentralized ledger,blockchain provides an effective solution for protecting tax data and avoiding tax-related errors and fraud.The introduction of blockchain into e-taxation protocols can ensure the public verification of taxes.However,balancing taxpayer identity privacy with regulation remains a challenge.In this paper,we propose a blockchain-based anonymous and regulatory e-taxation protocol.This protocol ensures the supervision and tracking of malicious taxpayers while maintaining honest taxpayer identity privacy,reduces the storage needs for public key certificates in the public key infrastructure,and enables selfcertification of taxpayers’public keys and addresses.We formalize the security model of unforgeability for transactions,anonymity for honest taxpayers,and traceability for malicious taxpayers.Security analysis shows that the proposed protocol satisfies unforgeability,anonymity,and traceability.The experimental results of time consumption show that the protocol is feasible in practical applications.展开更多
The proper flowering time of rose(Rosa hybrida)is vital for the market value of this horticultural crop,but the mechanism regulating this trait is largely unclear.Here,we found that the transcription factor SQUAMOSA P...The proper flowering time of rose(Rosa hybrida)is vital for the market value of this horticultural crop,but the mechanism regulating this trait is largely unclear.Here,we found that the transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE4(RhSPL4)positively regulates flowering time in rose.Transient silencing or overexpression transgenic rose plants of RhSPL4 exhibited delayed or early flowering,respectively.Analysis of transcriptome data from transgenic lines overexpressing RhSPL4 compared to the wild type indicated that differentially expressed genes were significantly enriched in the circadian rhythm pathway.Among the proteins encoded by these genes,RhSPL4 binds to the promoter of PSEUDO-RESPONSE REGULATOR 5-LIKE(RhPRR5L),as revealed in yeast one-hybrid,dual-Luciferase/Renilla luciferase reporter,chromatin immunoprecipitation-quantitative PCR and electrophoretic mobility shift assay.Furthermore,RhSPL4 specifically binds to the478 to441 bp region of the RhPRR5L promoter and activates its transcription.The silencing of RhPRR5L delayed flowering time in rose,resembling the phenotype of RhSPL4-silenced plants.Together,these results indicate that the RhSPL4-RhPRR5L module positively regulates flowering time in rose,laying the foundation for the genetic improvement of flowering time in this important horticultural crop.展开更多
The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstru...The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs.展开更多
Anthocyanins are important metabolites that provide a red or blue-purple hue to plants.The biosynthesis of these metabolites is mainly activated by the MYB-bHLH-WD40(MBW)complex and repressed by a wide variety of prot...Anthocyanins are important metabolites that provide a red or blue-purple hue to plants.The biosynthesis of these metabolites is mainly activated by the MYB-bHLH-WD40(MBW)complex and repressed by a wide variety of proteins.Studies have shown that MYB activators activate MYB repressors to balance anthocyanin biosynthesis.However,there is a scarcity of studies investigating this mechanism in grapes.To explore the transcription factors involved in the regulation of anthocyanin biosynthesis,we reanalyzed the RNA-seq database for different developmental stages of‘Muscat Hamburg'berries,and the R2R3-MYB gene,annotated as VvMYB3,was screened.Our study revealed the anthocyanin content of the grape cultivar‘Y73'was higher than that of its parental cultivar MH,and the putative repressor VvMYB3 was found to be highly expressed in‘Y73'by qRT-PCR.The calli transgenic assays demonstrated that the repressive activity of VvMYB3 was conferred by the b HLH-binding motif,as well as by the C1 and C2 motifs.Yeast hybridization and chip-PCR assays revealed that VvMYB3 could repress anthocyanin biosynthesis by competing with VvMYBA1 to bind to VvMYC1 and promoting histone deacetylation of VvUFGT via the C2 motif.However,the expression of VvMYB3 was activated by VvMYBA1,which forms a negative feedback regulatory loop to modulate anthocyanin accumulation.In addition,we found a 408-bp repeat tandem sequence insertion in the VvMYBA1 promoter region of‘Y73'by sequencing.The GUS activity analysis showed that this sequence enhanced the expression of VvMYBA1 and led to an excessive accumulation of anthocyanins.Overall,our results provide insights into the anthocyanin activator-repressor system in grapes that prevents overaccumulation of anthocyanins.展开更多
Red fruit peel is one of pear's most valuable economic traits and is mainly determined by anthocyanins.Many pear cultivars with a red peel originated from bud sports;however,little is known about the genetic mecha...Red fruit peel is one of pear's most valuable economic traits and is mainly determined by anthocyanins.Many pear cultivars with a red peel originated from bud sports;however,little is known about the genetic mechanisms underlying this trait.We have previously identified a mutant Pp BBX24 containing a 14-nucleotide deletion in the coding region(Ppbbx24-del)as the only known variant associated with the red coloration of the mutant‘Red Zaosu'pear(Pyrus pyrifolia White Pear Group).Herein,we analyzed the role of the mutant gene in red coloration and its mechanism of action.The results showed that light promoted red peel coloration in the‘Red Zaosu'pear,and Ppbbx24-del positively affected light-induced anthocyanin biosynthesis,while normal Pp BBX24 had the opposite effects.Transient and stable transformation experiments confirmed that Ppbbx24-del could promote anthocyanin accumulation in pear fruit peels,calli,and tobacco flowers.Due to the loss of nuclear localization sequence(NLS)and viral protein(VP)domains,Ppbbx24-del co-localized in the nucleus and cytoplasm,whereas PpBBX24 localized only in the nucleus.Real-time PCR and transcriptome analyses indicated that PpM YB10 and PpH Y5 are highly expressed in the‘Red Zaosu'pear.In yeast one-hybrid and dual-luciferase assays,Ppbbx24-del and PpHY5 independently promoted the expression of PpC HS,PpC HI,and PpM YB10 by binding to their promoters;however,PpBBX24 did not affect the expression of these genes.Additionally,we found that Ppbbx24-del and PpHY5 had additive effects on the expression of PpC HS,PpC HI,and PpMYB10,as they promote the expression of anthocyanin synthesis genes separately.The co-expression of PpB BX24 and PpHY5 inhibited the activation of downstream genes by PpHY5,which was attributed to the interaction between the two loci.In conclusion,our results clarify the molecular mechanism by which mutant Ppbbx24-del and PpBBX24 exert opposite effects in regulating anthocyanin accumulation in pear.These findings lay an important theoretical foundation for using Ppbbx24-del to create red pear cultivars.展开更多
The orientation of precipitates was regulated by an improved twinning-aging-detwinning(TAD)process in Mg-Sn sheets.A structure with specific proportions of dual-precipitates was regulated,significantly enhancing the m...The orientation of precipitates was regulated by an improved twinning-aging-detwinning(TAD)process in Mg-Sn sheets.A structure with specific proportions of dual-precipitates was regulated,significantly enhancing the material’s strength.The formation mechanism of the dual-precipitates was investigated,and the evolution of precipitate orientation was confirmed.A combined SEM,EBSD and TEM method was developed to identify the coupling relationship between complex grain orientation and precipitate orientation.The orientation relationship between precipitates and the matrix could be quantitatively analyzed in the same region.Subsequently,the Orowan model was refined to quantify the strength enhancement effect following the orientation regulation of precipitates.The TAD sample containing dual-precipitates exhibited a 99.1%increase in TYS,equivalent to an increase of 108 MPa,compared to unregulated samples A.According to Orowan calculations,the theoretical strength increment from the three strengthening mechanisms was 113 MPa,closely matching the experimental increment of 108 MPa.Notably,the materials with a specific proportion of the dual-precipitates showed a substantial increase in strength.展开更多
Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyio...Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries.展开更多
To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid tre...To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications.展开更多
Objective Glioma is a highly heterogeneous and malignant intracranial tumor that presents challenges for clinical treatment.ELMO domain containing 2(ELMOD2)is a GTPase-activating protein that regulates a range of cell...Objective Glioma is a highly heterogeneous and malignant intracranial tumor that presents challenges for clinical treatment.ELMO domain containing 2(ELMOD2)is a GTPase-activating protein that regulates a range of cellular biological processes.However,its specific role and prognostic value in tumorigenesis are still unknown.This study aimed to assess the prognostic relevance and signaling function of ELMOD2 in gliomas.Methods The Chinese Glioma Genome Atlas(CGGA)and The Cancer Genome Atlas(TCGA)databases were utilized to conduct a comprehensive analysis of the expression profile of ELMOD2 in gliomas,elucidating its associations with clinicopathological parameters and patient prognosis.Single-cell analysis was performed to characterize ELMOD2 expression across distinct glioma cell subpopulations.Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses,and Gene Set Variation Analysis(GSVA)were employed to evaluate the potential biological functions of ELMOD2 in gliomagenesis.Specific small interfering RNAs(siRNAs)were used to knock down ELMOD2 in the glioma cell lines U251 and A172 to assess their cellular behaviors and examine the levels of multiple key signaling molecules associated with the occurrence of gliomas.Results ELMOD2 was overexpressed in gliomas,and this upregulation was correlated with tumor grade,isocitrate dehydrogenase mutation,and 1p/19q codeletion status.Notably,ELMOD2 expression was elevated in classical and mesenchymal subtypes,and single-cell resolution analysis revealed predominant enrichment within malignant cells.Functionally,ELMOD2 regulated cell cycle progression,and its overexpression was related to independent adverse outcomes.In vitro experiments revealed that ELMOD2 was located in the cytoplasm and nucleoplasm.Furthermore,ELMOD2 knockdown reduced proliferation,migration,and invasion and increased apoptosis in U251 and A172 cell lines.Finally,ELMOD2 knockdown significantly decreased p-Erk1/2.Conclusions ELMOD2 expression in glioma is positively correlated with tumorigenesis and is a crucial independent prognostic marker.Thus,ELMOD2 is a promising biomarker and therapeutic target for glioma treatment.展开更多
Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat...Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.展开更多
Platinum(Pt) nanoparticle catalysts remain the most popular cathode materials for oxygen reduction reaction(ORR) in proton exchange membrane fuel cells. Non-metallic alloying of Pt has become an emerging strategy to i...Platinum(Pt) nanoparticle catalysts remain the most popular cathode materials for oxygen reduction reaction(ORR) in proton exchange membrane fuel cells. Non-metallic alloying of Pt has become an emerging strategy to improve electrocatalytic performance, however, the electrocatalytic ORR mechanisms still need to be understood for further improvement toward practical application. Herein, a rapid microwave reduction method is employed for alloying phosphorous(P) into Pt to form a carbon supported phosphorus-alloyed Pt nanoparticle catalyst(P-Pt/C), which demonstrates the ability to replace commercial Pt/C. By a combination of density functional theory calculations and in-situ electrochemical Raman spectroscopy, the regulation role of P-alloying in the electrocatalytic mechanisms is revealed. It is found that the nearby Pt atoms can convert the ORR pathway from associative one to dissociative one, exhibiting a spontaneous dissociation of*OOH intermediate to*OH and*O species as well as a change of potential determining step to*O protonation. Furthermore, the strategy of large-scale economic synthesis of such alloying Pt-based catalyst is also established, demonstrated by a gram-level synthesis per batch.This study puts insight into the electrocatalytic ORR fundamentals of Pt-alloying with non-metals and provides a basis for the reasonable design and synthesis of efficient nonmetals-alloyed Pt catalysts.展开更多
OBJECTIVE: Exploring the effect of Optimized New Shengmai powder(优化新生脉散方, ONSMP) on myocardial fibrosis in heart failure(HF) based on rat sarcoma(RAS)/rapidly accelerated fibrosarcoma(RAF)/mitogen-activated pro...OBJECTIVE: Exploring the effect of Optimized New Shengmai powder(优化新生脉散方, ONSMP) on myocardial fibrosis in heart failure(HF) based on rat sarcoma(RAS)/rapidly accelerated fibrosarcoma(RAF)/mitogen-activated protein kinase kinase(MEK)/extracellular regulated protein kinases(ERK) signaling pathway. METHODS: Randomized 70 Sprague-Dawley rats into sham(n = 10) and operation(n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low(L), medium(M), and high(H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen(COL) Ⅰ and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the m RNA levels of COL Ⅰ, COL Ⅲ, α-smooth muscle actin(α-SMA), and c-Fos proto-oncogene(c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor(p-ELK1), p-c-Fos, α-SMA, COL Ⅰ, and COL Ⅲ by Western blot. RESULTS: ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL Ⅰ/Ⅲ content, down-regulate the m RNA of COL Ⅰ/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS: ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.展开更多
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro...The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).展开更多
Phosphatase and tensin homolog(PTEN)is a multifunctional gene involved in a variety of physiological and pathological processes.Circular RNAs(circRNAs)are generated from back-splicing events during mRNA processing and...Phosphatase and tensin homolog(PTEN)is a multifunctional gene involved in a variety of physiological and pathological processes.Circular RNAs(circRNAs)are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins.However,PTEN-related circRNAs are largely unknown.Here,we report that circPTEN-mitochondria(MT)(hsa_circ_0002934)is a circular RNA encoded by exons 3,4,and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism.CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein(LRPPRC),which regulates posttranscriptional gene expression in mitochondria.Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator(SRA)stem-loop interacting RNA binding protein(SLIRP)and inhibits the polyadenylation of mitochondrial mRNA,which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production.Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism.This study expands our understanding of the role of PTEN,which produces both linear and circular RNAs with different and independent functions.展开更多
Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic...Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.展开更多
Florets are the basic structural units of spikelets,and their morphogenesis determines the yield and quality of rice grains.However,whether and how pseudouridine-5’-phosphate glycosidase participates in rice spikelet...Florets are the basic structural units of spikelets,and their morphogenesis determines the yield and quality of rice grains.However,whether and how pseudouridine-5’-phosphate glycosidase participates in rice spikelet development remains an open question.In this study,we identified a novel gene,OsPPG,which encodes a peroxisome-localized pseudouridine-5’-phosphate glycosidase and regulates the development of rice spikelets.osppg mutants exhibited abnormal sterile lemma,lemma,palea,lodicule,stamens,and pistils;male sterility;shorter panicles;and reduced plant height.OsPPG was found to regulate several OsMADS genes,thereby affecting the morphogenesis of rice spikelets.Furthermore,metabolomics revealed that the OsPPG gene was involved in the decomposition of pseudouridine via the pyrimidine metabolism pathway and may affect the jasmonic acid signaling pathway.These results suggest that OsPPG is a key regulator of rice spikelet development.展开更多
The flesh color of pummelo(Citrus maxima)fruits is highly diverse and largely depends on the level of carotenoids,which are beneficial to human health.It is vital to investigate the regulatory network of carotenoid bi...The flesh color of pummelo(Citrus maxima)fruits is highly diverse and largely depends on the level of carotenoids,which are beneficial to human health.It is vital to investigate the regulatory network of carotenoid biosynthesis to improve the carotenoid content in pummelo.However,the molecular mechanism underlying carotenoid accumulation in pummelo is not fully understood.In this study,we identified a novel histone methyltransferase gene,CgSDG40,involved in carotenoid regulation by analyzing the flesh transcriptome of typical white-fleshed pummelo,red-fleshed pummelo and extreme-colored F1 hybrids from a segregated pummelo population.Expression of CgSDG40 corresponded to flesh color change and was highly coexpressed with CgPSY1.Interestingly,CgSDG40 and CgPSY1 are located physically adjacent to each other on the chromosome in opposite directions,sharing a partially overlapping promoter region.Subcellular localization analysis indicated that CgSDG40 localizes to the nucleus.Overexpression of CgSDG40 significantly increased the total carotenoid content in citrus calli relative to that in wild type.In addition,expression of CgPSY1 was significantly activated in overexpression lines relative to wild type.Taken together,our findings reveal a novel histone methyltransferase regulator,CgSDG40,involved in the regulation of carotenoid biosynthesis in citrus and provide new strategies for molecular design breeding and genetic improvement of fruit color and nutritional quality.展开更多
Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepar...Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepared and activated under different atmosphere(i.e.,air,hydrogen(H_(2))and carbon monoxide(CO))for efficient oxidation of HCHO.The catalyst activated with CO(Ag/Mn-CO)displayed the highest activity among the tested samples with 90% conversion at 100℃ under a gas space velocity of 75,000 mL/(g_(cat)·hr).Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO.In contrast,other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size,so that the integrate activity is limited by one specific reaction step.This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.展开更多
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu...On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.展开更多
Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation ...Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.展开更多
文摘Taxation,the primary source of fiscal revenue,has profound implications in guiding resource allocation,promoting economic growth,adjusting social wealth distribution,and enhancing cultural influence.The development of e-taxation provides a enhanced security for taxation,but it still faces the risk of inefficiency and tax data leakage.As a decentralized ledger,blockchain provides an effective solution for protecting tax data and avoiding tax-related errors and fraud.The introduction of blockchain into e-taxation protocols can ensure the public verification of taxes.However,balancing taxpayer identity privacy with regulation remains a challenge.In this paper,we propose a blockchain-based anonymous and regulatory e-taxation protocol.This protocol ensures the supervision and tracking of malicious taxpayers while maintaining honest taxpayer identity privacy,reduces the storage needs for public key certificates in the public key infrastructure,and enables selfcertification of taxpayers’public keys and addresses.We formalize the security model of unforgeability for transactions,anonymity for honest taxpayers,and traceability for malicious taxpayers.Security analysis shows that the proposed protocol satisfies unforgeability,anonymity,and traceability.The experimental results of time consumption show that the protocol is feasible in practical applications.
基金supported by Yunnan Province Agricultural Joint Key Project(Grant No.202401BD070001-016)the National Natural Science Foundation of China(Grant No.32202530)+3 种基金Talent Introduction and Training Project of Yunnan Academy of Agricultural Sciences(Grant No.2024RCYP-09)Fundamental Research Project(Grant No.202401CF070046)Xingdian Talent support program(XDYC-QNRC-2023-0457)Yunnan Technology Innovation Center of Flower Technique.
文摘The proper flowering time of rose(Rosa hybrida)is vital for the market value of this horticultural crop,but the mechanism regulating this trait is largely unclear.Here,we found that the transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE4(RhSPL4)positively regulates flowering time in rose.Transient silencing or overexpression transgenic rose plants of RhSPL4 exhibited delayed or early flowering,respectively.Analysis of transcriptome data from transgenic lines overexpressing RhSPL4 compared to the wild type indicated that differentially expressed genes were significantly enriched in the circadian rhythm pathway.Among the proteins encoded by these genes,RhSPL4 binds to the promoter of PSEUDO-RESPONSE REGULATOR 5-LIKE(RhPRR5L),as revealed in yeast one-hybrid,dual-Luciferase/Renilla luciferase reporter,chromatin immunoprecipitation-quantitative PCR and electrophoretic mobility shift assay.Furthermore,RhSPL4 specifically binds to the478 to441 bp region of the RhPRR5L promoter and activates its transcription.The silencing of RhPRR5L delayed flowering time in rose,resembling the phenotype of RhSPL4-silenced plants.Together,these results indicate that the RhSPL4-RhPRR5L module positively regulates flowering time in rose,laying the foundation for the genetic improvement of flowering time in this important horticultural crop.
基金National Natural Science Foundation of China(52261032,51861021,51661016)Science and Technology Plan of Gansu Province(21YF5GA074)+2 种基金Public Welfare Project of Zhejiang Natural Science Foundation(LGG22E010008)Wenzhou Basic Public Welfare Scientific Research Project(G2023020)Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology。
文摘The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs.
基金supported by the National Natural Science Foundation of China(Grant No.32202438)the China Agriculture Research System(Grant No.CARS-29)the Agricultural Science and Technology Innovation Program(Grant No.CAASASTIP-ZFRI)。
文摘Anthocyanins are important metabolites that provide a red or blue-purple hue to plants.The biosynthesis of these metabolites is mainly activated by the MYB-bHLH-WD40(MBW)complex and repressed by a wide variety of proteins.Studies have shown that MYB activators activate MYB repressors to balance anthocyanin biosynthesis.However,there is a scarcity of studies investigating this mechanism in grapes.To explore the transcription factors involved in the regulation of anthocyanin biosynthesis,we reanalyzed the RNA-seq database for different developmental stages of‘Muscat Hamburg'berries,and the R2R3-MYB gene,annotated as VvMYB3,was screened.Our study revealed the anthocyanin content of the grape cultivar‘Y73'was higher than that of its parental cultivar MH,and the putative repressor VvMYB3 was found to be highly expressed in‘Y73'by qRT-PCR.The calli transgenic assays demonstrated that the repressive activity of VvMYB3 was conferred by the b HLH-binding motif,as well as by the C1 and C2 motifs.Yeast hybridization and chip-PCR assays revealed that VvMYB3 could repress anthocyanin biosynthesis by competing with VvMYBA1 to bind to VvMYC1 and promoting histone deacetylation of VvUFGT via the C2 motif.However,the expression of VvMYB3 was activated by VvMYBA1,which forms a negative feedback regulatory loop to modulate anthocyanin accumulation.In addition,we found a 408-bp repeat tandem sequence insertion in the VvMYBA1 promoter region of‘Y73'by sequencing.The GUS activity analysis showed that this sequence enhanced the expression of VvMYBA1 and led to an excessive accumulation of anthocyanins.Overall,our results provide insights into the anthocyanin activator-repressor system in grapes that prevents overaccumulation of anthocyanins.
基金National Natural Science Foundation of China(32072531)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2016-RIP)+2 种基金the National Key Research and Development Program of China(2021YFE0190700)the ScienceTechnology&Innovation Funding Authority(STDF)of Egypt(43093)for funding this work。
文摘Red fruit peel is one of pear's most valuable economic traits and is mainly determined by anthocyanins.Many pear cultivars with a red peel originated from bud sports;however,little is known about the genetic mechanisms underlying this trait.We have previously identified a mutant Pp BBX24 containing a 14-nucleotide deletion in the coding region(Ppbbx24-del)as the only known variant associated with the red coloration of the mutant‘Red Zaosu'pear(Pyrus pyrifolia White Pear Group).Herein,we analyzed the role of the mutant gene in red coloration and its mechanism of action.The results showed that light promoted red peel coloration in the‘Red Zaosu'pear,and Ppbbx24-del positively affected light-induced anthocyanin biosynthesis,while normal Pp BBX24 had the opposite effects.Transient and stable transformation experiments confirmed that Ppbbx24-del could promote anthocyanin accumulation in pear fruit peels,calli,and tobacco flowers.Due to the loss of nuclear localization sequence(NLS)and viral protein(VP)domains,Ppbbx24-del co-localized in the nucleus and cytoplasm,whereas PpBBX24 localized only in the nucleus.Real-time PCR and transcriptome analyses indicated that PpM YB10 and PpH Y5 are highly expressed in the‘Red Zaosu'pear.In yeast one-hybrid and dual-luciferase assays,Ppbbx24-del and PpHY5 independently promoted the expression of PpC HS,PpC HI,and PpM YB10 by binding to their promoters;however,PpBBX24 did not affect the expression of these genes.Additionally,we found that Ppbbx24-del and PpHY5 had additive effects on the expression of PpC HS,PpC HI,and PpMYB10,as they promote the expression of anthocyanin synthesis genes separately.The co-expression of PpB BX24 and PpHY5 inhibited the activation of downstream genes by PpHY5,which was attributed to the interaction between the two loci.In conclusion,our results clarify the molecular mechanism by which mutant Ppbbx24-del and PpBBX24 exert opposite effects in regulating anthocyanin accumulation in pear.These findings lay an important theoretical foundation for using Ppbbx24-del to create red pear cultivars.
基金National Natural Science Foundation of China(52374405)Joint Innovaion Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University(LH2024018)State Key Laboratory Open Project(Q110824Q02001)。
文摘The orientation of precipitates was regulated by an improved twinning-aging-detwinning(TAD)process in Mg-Sn sheets.A structure with specific proportions of dual-precipitates was regulated,significantly enhancing the material’s strength.The formation mechanism of the dual-precipitates was investigated,and the evolution of precipitate orientation was confirmed.A combined SEM,EBSD and TEM method was developed to identify the coupling relationship between complex grain orientation and precipitate orientation.The orientation relationship between precipitates and the matrix could be quantitatively analyzed in the same region.Subsequently,the Orowan model was refined to quantify the strength enhancement effect following the orientation regulation of precipitates.The TAD sample containing dual-precipitates exhibited a 99.1%increase in TYS,equivalent to an increase of 108 MPa,compared to unregulated samples A.According to Orowan calculations,the theoretical strength increment from the three strengthening mechanisms was 113 MPa,closely matching the experimental increment of 108 MPa.Notably,the materials with a specific proportion of the dual-precipitates showed a substantial increase in strength.
基金financially supported by the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(E411060316)the NSFC-CONICFT Joint Project(51961125207)+1 种基金the Special Fund(2024)of Basic Scientific Research Project at Undergraduate University in Liaoning Province(LJ212410152056)the Foundation(GZKF202301)of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology,Shandong Academy of Sciences。
文摘Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries.
基金Tural Science Foundation of China(No.52274255)the Young Scientists Fund of the National Natural ScienceFoundation of China(No.52404276)+3 种基金Fundamental Re-search Funds for the Central Universities,China(Nos.N2301003,N2201008,N2201004,and N2301025)Liaon-ingRevitalizationTalentsProgram,China(No.XLYC2202028)Postdoctoral Foundation of NortheasternUniversity,Young Elite Scientists Sponsorship Program byChina Association for Science and Technology(No.2022QNRC001)and China Postdoctoral Science Founda-tion(No.2022M720025)。
文摘To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications.
基金supported by grants from the Natural Science Foundation of Guangxi Province(Grant No:2022GXNSFAA035639 and 2023GXNSFBA026092)the National Natural Science Foundation of China(Grant No:81860445 and 82260554)the Innovation Project of Guangxi Graduate Education(Grant No:YCBZ2024118)。
文摘Objective Glioma is a highly heterogeneous and malignant intracranial tumor that presents challenges for clinical treatment.ELMO domain containing 2(ELMOD2)is a GTPase-activating protein that regulates a range of cellular biological processes.However,its specific role and prognostic value in tumorigenesis are still unknown.This study aimed to assess the prognostic relevance and signaling function of ELMOD2 in gliomas.Methods The Chinese Glioma Genome Atlas(CGGA)and The Cancer Genome Atlas(TCGA)databases were utilized to conduct a comprehensive analysis of the expression profile of ELMOD2 in gliomas,elucidating its associations with clinicopathological parameters and patient prognosis.Single-cell analysis was performed to characterize ELMOD2 expression across distinct glioma cell subpopulations.Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses,and Gene Set Variation Analysis(GSVA)were employed to evaluate the potential biological functions of ELMOD2 in gliomagenesis.Specific small interfering RNAs(siRNAs)were used to knock down ELMOD2 in the glioma cell lines U251 and A172 to assess their cellular behaviors and examine the levels of multiple key signaling molecules associated with the occurrence of gliomas.Results ELMOD2 was overexpressed in gliomas,and this upregulation was correlated with tumor grade,isocitrate dehydrogenase mutation,and 1p/19q codeletion status.Notably,ELMOD2 expression was elevated in classical and mesenchymal subtypes,and single-cell resolution analysis revealed predominant enrichment within malignant cells.Functionally,ELMOD2 regulated cell cycle progression,and its overexpression was related to independent adverse outcomes.In vitro experiments revealed that ELMOD2 was located in the cytoplasm and nucleoplasm.Furthermore,ELMOD2 knockdown reduced proliferation,migration,and invasion and increased apoptosis in U251 and A172 cell lines.Finally,ELMOD2 knockdown significantly decreased p-Erk1/2.Conclusions ELMOD2 expression in glioma is positively correlated with tumorigenesis and is a crucial independent prognostic marker.Thus,ELMOD2 is a promising biomarker and therapeutic target for glioma treatment.
基金supported by the National Key R&D Program of China(No.2021YFC2103600)the National Natural Science Foundation of China(Nos.21878156,21978131,22275085,and 22278224)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20200089 and BK20200691)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL21-08).
文摘Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.
基金sponsored by the Natural Science Foundation of Shanghai (No. 23ZR1423900)the National Natural Science Foundation of China (No. 22272105)。
文摘Platinum(Pt) nanoparticle catalysts remain the most popular cathode materials for oxygen reduction reaction(ORR) in proton exchange membrane fuel cells. Non-metallic alloying of Pt has become an emerging strategy to improve electrocatalytic performance, however, the electrocatalytic ORR mechanisms still need to be understood for further improvement toward practical application. Herein, a rapid microwave reduction method is employed for alloying phosphorous(P) into Pt to form a carbon supported phosphorus-alloyed Pt nanoparticle catalyst(P-Pt/C), which demonstrates the ability to replace commercial Pt/C. By a combination of density functional theory calculations and in-situ electrochemical Raman spectroscopy, the regulation role of P-alloying in the electrocatalytic mechanisms is revealed. It is found that the nearby Pt atoms can convert the ORR pathway from associative one to dissociative one, exhibiting a spontaneous dissociation of*OOH intermediate to*OH and*O species as well as a change of potential determining step to*O protonation. Furthermore, the strategy of large-scale economic synthesis of such alloying Pt-based catalyst is also established, demonstrated by a gram-level synthesis per batch.This study puts insight into the electrocatalytic ORR fundamentals of Pt-alloying with non-metals and provides a basis for the reasonable design and synthesis of efficient nonmetals-alloyed Pt catalysts.
基金Innovation Team Development Program of the Ministry of Education:Research on the Prevention and Treatment of Cardiovascular Diseases with Traditional Chinese Medicine (IRT-16R54)。
文摘OBJECTIVE: Exploring the effect of Optimized New Shengmai powder(优化新生脉散方, ONSMP) on myocardial fibrosis in heart failure(HF) based on rat sarcoma(RAS)/rapidly accelerated fibrosarcoma(RAF)/mitogen-activated protein kinase kinase(MEK)/extracellular regulated protein kinases(ERK) signaling pathway. METHODS: Randomized 70 Sprague-Dawley rats into sham(n = 10) and operation(n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low(L), medium(M), and high(H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen(COL) Ⅰ and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the m RNA levels of COL Ⅰ, COL Ⅲ, α-smooth muscle actin(α-SMA), and c-Fos proto-oncogene(c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor(p-ELK1), p-c-Fos, α-SMA, COL Ⅰ, and COL Ⅲ by Western blot. RESULTS: ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL Ⅰ/Ⅲ content, down-regulate the m RNA of COL Ⅰ/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS: ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),through the Discovery Grant Program (RGPIN-2018-06725)the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651)+2 种基金the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488)supported by funding from the Canada First Research Excellence Fund as part of the University of Alberta’s Future Energy Systems research initiative (FES-T06-Q03)supported by the Chinese Scholarship Council (CSC)(Grant No. 202006450027).
文摘The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).
基金Y.Yin including the National Natural Science Foundation of China(82030081 and 81874235)the National Key Research and Development Program of China(2021YFA1300601)the Shenzhen High-level Hospital Construction Fund and Shenzhen Basic Research Key Project(JCYJ20220818102811024).
文摘Phosphatase and tensin homolog(PTEN)is a multifunctional gene involved in a variety of physiological and pathological processes.Circular RNAs(circRNAs)are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins.However,PTEN-related circRNAs are largely unknown.Here,we report that circPTEN-mitochondria(MT)(hsa_circ_0002934)is a circular RNA encoded by exons 3,4,and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism.CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein(LRPPRC),which regulates posttranscriptional gene expression in mitochondria.Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator(SRA)stem-loop interacting RNA binding protein(SLIRP)and inhibits the polyadenylation of mitochondrial mRNA,which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production.Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism.This study expands our understanding of the role of PTEN,which produces both linear and circular RNAs with different and independent functions.
基金funded by the National Natural Science Foundation of China(U21B2057,12102328,and 52372252)the Newly Introduced Scientific Research Start-up Funds for Hightech Talents(DD11409024).
文摘Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.
基金partially supported by the Key Program of the National Natural Science of Fujian Province(2022J02010)Science and Technology Project of State Administration of Science,Technology and Industry for National Defense,Seed Innovation and Industrialization Project of Fujian Province(zycxny2021003)Fujian Province Public Welfare Scientific Research Program(2016R1018-8)。
文摘Florets are the basic structural units of spikelets,and their morphogenesis determines the yield and quality of rice grains.However,whether and how pseudouridine-5’-phosphate glycosidase participates in rice spikelet development remains an open question.In this study,we identified a novel gene,OsPPG,which encodes a peroxisome-localized pseudouridine-5’-phosphate glycosidase and regulates the development of rice spikelets.osppg mutants exhibited abnormal sterile lemma,lemma,palea,lodicule,stamens,and pistils;male sterility;shorter panicles;and reduced plant height.OsPPG was found to regulate several OsMADS genes,thereby affecting the morphogenesis of rice spikelets.Furthermore,metabolomics revealed that the OsPPG gene was involved in the decomposition of pseudouridine via the pyrimidine metabolism pathway and may affect the jasmonic acid signaling pathway.These results suggest that OsPPG is a key regulator of rice spikelet development.
基金supported by the Major Special Projects and Key R&D Projects in Yunnan Province,China(202102AE090054)the National Natural Science Foundation of China(31925034)+1 种基金the Foundation of Hubei Hongshan Laboratory granted to Dr.Qiang Xu,China(2021hszd016)the Key Project of Hubei Provincial Natural Science Foundation,China(2021CFA017)。
文摘The flesh color of pummelo(Citrus maxima)fruits is highly diverse and largely depends on the level of carotenoids,which are beneficial to human health.It is vital to investigate the regulatory network of carotenoid biosynthesis to improve the carotenoid content in pummelo.However,the molecular mechanism underlying carotenoid accumulation in pummelo is not fully understood.In this study,we identified a novel histone methyltransferase gene,CgSDG40,involved in carotenoid regulation by analyzing the flesh transcriptome of typical white-fleshed pummelo,red-fleshed pummelo and extreme-colored F1 hybrids from a segregated pummelo population.Expression of CgSDG40 corresponded to flesh color change and was highly coexpressed with CgPSY1.Interestingly,CgSDG40 and CgPSY1 are located physically adjacent to each other on the chromosome in opposite directions,sharing a partially overlapping promoter region.Subcellular localization analysis indicated that CgSDG40 localizes to the nucleus.Overexpression of CgSDG40 significantly increased the total carotenoid content in citrus calli relative to that in wild type.In addition,expression of CgPSY1 was significantly activated in overexpression lines relative to wild type.Taken together,our findings reveal a novel histone methyltransferase regulator,CgSDG40,involved in the regulation of carotenoid biosynthesis in citrus and provide new strategies for molecular design breeding and genetic improvement of fruit color and nutritional quality.
基金supported by the National Natural Science Foundation of China(Nos.22025604,22106171,21936005,and 21976196)the Jinan“20 Universities”Funding Project(No.2020GXRC027)。
文摘Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepared and activated under different atmosphere(i.e.,air,hydrogen(H_(2))and carbon monoxide(CO))for efficient oxidation of HCHO.The catalyst activated with CO(Ag/Mn-CO)displayed the highest activity among the tested samples with 90% conversion at 100℃ under a gas space velocity of 75,000 mL/(g_(cat)·hr).Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO.In contrast,other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size,so that the integrate activity is limited by one specific reaction step.This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.
文摘On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.
文摘Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.