期刊文献+
共找到2,148篇文章
< 1 2 108 >
每页显示 20 50 100
Gamma-ray spectral energy resolution calibration based on locally constrained regularization for scintillation detector response:methodology,numerical,and experimental analysis
1
作者 Guo-Feng Yang Wen-Zheng Peng +3 位作者 Dong-Ming Liu Xiao-Long Wu Meng Chen Xiang-Jun Liu 《Nuclear Science and Techniques》 2025年第4期92-104,共13页
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para... Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking. 展开更多
关键词 Energy resolution regularization Gaussian broadening Spectral analysis Scintillation detector
在线阅读 下载PDF
Absorption compensation via structure tensor regularization multichannel inversion
2
作者 Liang Bing Zhao Dong-feng +4 位作者 Xia Lian-jun Tang Guo-song Luo Zhen Guan Wen-hua Wang Xue-jing 《Applied Geophysics》 2025年第3期635-646,892,893,共14页
Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seis... Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method. 展开更多
关键词 Absorption compensation Structure tensor RESOLUTION Signal-to-noise ratio regularization
在线阅读 下载PDF
Robust visual tracking using temporal regularization correlation filter with high-confidence strategy
3
作者 Xiao-Gang Dong Ke-Xuan Li +2 位作者 Hong-Xia Mao Chen Hu Tian Pu 《Journal of Electronic Science and Technology》 2025年第2期81-96,共16页
Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking ro... Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking robustness and precision.In this paper,a universally applicable method based on correlation filters is introduced to mitigate model drift in complex scenarios.It employs temporal-confidence samples as a priori to guide the model update process and ensure its precision and consistency over a long period.An improved update mechanism based on the peak side-lobe to peak correlation energy(PSPCE)criterion is proposed,which selects high-confidence samples along the temporal dimension to update temporal-confidence samples.Extensive experiments on various benchmarks demonstrate that the proposed method achieves a competitive performance compared with the state-of-the-art methods.Especially when the target appearance changes significantly,our method is more robust and can achieve a balance between precision and speed.Specifically,on the object tracking benchmark(OTB-100)dataset,compared to the baseline,the tracking precision of our model improves by 8.8%,8.8%,5.1%,5.6%,and 6.9%for background clutter,deformation,occlusion,rotation,and illumination variation,respectively.The results indicate that this proposed method can significantly enhance the robustness and precision of target tracking in dynamic and challenging environments,offering a reliable solution for applications such as real-time monitoring,autonomous driving,and precision guidance. 展开更多
关键词 Appearance changes Correlation filter High-confidence strategy Temporal regularization Visual tracking
在线阅读 下载PDF
Full waveform inversion with fractional anisotropic total p-variation regularization
4
作者 Bo Li Xiao-Tao Wen +2 位作者 Yu-Qiang Zhang Zi-Yu Qin Zhi-Di An 《Petroleum Science》 2025年第8期3266-3278,共13页
Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model ... Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process. 展开更多
关键词 Full waveform inversion Anisotropic total p-variation Fractional-order differences Sparse regularization
原文传递
Mechanical response identification of local interconnections in board- level packaging structures under projectile penetration using Bayesian regularization
5
作者 Xu Long Yuntao Hu Irfan Ali 《Defence Technology(防务技术)》 2025年第7期79-95,共17页
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to... Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions. 展开更多
关键词 Board-level packaging structure High strain-rate constitutive model Load identification Bayesian regularization Wavelet thresholding method
在线阅读 下载PDF
Deterministic Convergence Analysis for GRU Networks via Smoothing Regularization
6
作者 Qian Zhu Qian Kang +2 位作者 Tao Xu Dengxiu Yu Zhen Wang 《Computers, Materials & Continua》 2025年第5期1855-1879,共25页
In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/... In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling,they remain prone to overfitting,particularly under noisy or limited training data.Traditional L_(1)regularization,despite enforcing sparsity and accelerating optimization,introduces non-differentiable points in the error function,leading to oscillations during training.To address this,we propose a novel smoothing L_(1)regularization framework that replaces the non-differentiable absolute function with a quadratic approximation,ensuring gradient continuity and stabilizing the optimization landscape.Theoretically,we rigorously establish threekey properties of the resulting smoothing L_(1)-regularizedGRU(SL_(1)-GRU)model:(1)monotonic decrease of the error function across iterations,(2)weak convergence characterized by vanishing gradients as iterations approach infinity,and(3)strong convergence of network weights to fixed points under finite conditions.Comprehensive experiments on benchmark datasets-spanning function approximation,classification(KDD Cup 1999 Data,MNIST),and regression tasks(Boston Housing,Energy Efficiency)-demonstrate SL_(1)-GRUs superiority over baseline models(RNN,LSTM,GRU,L_(1)-GRU,L2-GRU).Empirical results reveal that SL_(1)-GRU achieves 1.0%-2.4%higher test accuracy in classification,7.8%-15.4%lower mean squared error in regression compared to unregularized GRU,while reducing training time by 8.7%-20.1%.These outcomes validate the method’s efficacy in balancing computational efficiency and generalization capability,and they strongly corroborate the theoretical calculations.The proposed framework not only resolves the non-differentiability challenge of L_(1)regularization but also provides a theoretical foundation for convergence guarantees in recurrent neural network training. 展开更多
关键词 Gated recurrent unit regularization convergence
在线阅读 下载PDF
Low-Rank Multi-View Subspace Clustering Based on Sparse Regularization 被引量:1
7
作者 Yan Sun Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期14-30,共17页
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif... Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods. 展开更多
关键词 CLUSTERING Multi-View Subspace Clustering Low-Rank Prior Sparse regularization
在线阅读 下载PDF
Efficient anti-aliasing and anti-leakage Fourier transform for high-dimensional seismic data regularization using cube removal and GPU
8
作者 Lu Liu Sindi Ghada +3 位作者 Fu-Hao Qin Youngseo Kim Vladimir Aleksic Hong-Wei Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3079-3089,共11页
Seismic data is commonly acquired sparsely and irregularly, which necessitates the regularization of seismic data with anti-aliasing and anti-leakage methods during seismic data processing. We propose a novel method o... Seismic data is commonly acquired sparsely and irregularly, which necessitates the regularization of seismic data with anti-aliasing and anti-leakage methods during seismic data processing. We propose a novel method of 4D anti-aliasing and anti-leakage Fourier transform using a cube-removal strategy to address the combination of irregular sampling and aliasing in high-dimensional seismic data. We compute a weighting function by stacking the spectrum along the radial lines, apply this function to suppress the aliasing energy, and then iteratively pick the dominant amplitude cube to construct the Fourier spectrum. The proposed method is very efficient due to a cube removal strategy for accelerating the convergence of Fourier reconstruction and a well-designed parallel architecture using CPU/GPU collaborative computing. To better fill the acquisition holes from 5D seismic data and meanwhile considering the GPU memory limitation, we developed the anti-aliasing and anti-leakage Fourier transform method in 4D with the remaining spatial dimension looped. The entire workflow is composed of three steps: data splitting, 4D regularization, and data merging. Numerical tests on both synthetic and field data examples demonstrate the high efficiency and effectiveness of our approach. 展开更多
关键词 High-dimensional regularization GPU ANTI-ALIASING ANTI-LEAKAGE
原文传递
Balance Sparse Decomposition Method with Nonconvex Regularization for Gearbox Fault Diagnosis
9
作者 Weiguo Huang Jun Wang +2 位作者 Guifu Du Shuyou Wu Zhongkui Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期258-271,共14页
As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gea... As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gearboxes.Gearbox fault signals usually contain multiple characteristic components and are accompanied by strong noise interference.Traditional sparse modeling methods are based on synthesis models,and there are few studies on analysis and balance models.In this paper,a balance nonconvex regularized sparse decomposition method is proposed,which based on a balance model and an arctangent nonconvex penalty function.The sparse dictionary is constructed by using Tunable Q-Factor Wavelet Transform(TQWT)that satisfies the tight frame condition,which can achieve efficient and fast solution.It is optimized and solved by alternating direction method of multipliers(ADMM)algorithm,and the non-convex regularized sparse decomposition algorithm of synthetic and analytical models are given.Through simulation experiments,the determination methods of regularization parameters and balance parameters are given,and compared with the L1 norm regularization sparse decomposition method under the three models.Simulation analysis and engineering experimental signal analysis verify the effectiveness and superiority of the proposed method. 展开更多
关键词 Gearbox fault diagnosis Balance model Sparse decomposition Non-convex regularization
在线阅读 下载PDF
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
10
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification Non-convex sparse regularization Alternating direction method of multipliers Proximal operators
在线阅读 下载PDF
Joint input–output identification of unstable systems with kernel regularization
11
作者 Yusuke Fujimoto Toshiharu Sugie 《Control Theory and Technology》 EI CSCD 2024年第2期195-202,共8页
This paper discusses closed-loop identification of unstable systems.In particular,wefirst apply the joint input–output identification method and then convert the identification problem of unstable systems into that of st... This paper discusses closed-loop identification of unstable systems.In particular,wefirst apply the joint input–output identification method and then convert the identification problem of unstable systems into that of stable systems,which can be tackled by using kernel-based regularization methods.We propose to identify two transfer functions by kernel regularization,the one from the reference signal to the input,and the one from the reference signal to the output.Since these transfer functions are stable,kernel regularization methods can construct their accurate models.Then the model of unstable system is constructed by ratio of these functions.The effectiveness of the proposed method is demonstrated by a numerical example and a practical experiment with a DC motor. 展开更多
关键词 Closed-loop identification Kernel regularization Joint input-output identification
原文传递
Enhanced Differentiable Architecture Search Based on Asymptotic Regularization
12
作者 Cong Jin Jinjie Huang +1 位作者 Yuanjian Chen Yuqing Gong 《Computers, Materials & Continua》 SCIE EI 2024年第2期1547-1568,共22页
In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search spa... In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach. 展开更多
关键词 Differentiable architecture search allegro search space asymptotic regularization natural exponential cosine annealing
在线阅读 下载PDF
Convergent Data-Driven Regularizations for CT Reconstruction
13
作者 Samira Kabri Alexander Auras +4 位作者 Danilo Riccio Hartmut Bauermeister Martin Benning Michael Moeller Martin Burger 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1342-1368,共27页
The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solutio... The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solution does not depend on the measured data continuously,regularization is needed to reestablish a continuous dependence.In this work,we investigate simple,but yet still provably convergent approaches to learning linear regularization methods from data.More specifically,we analyze two approaches:one generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of our previous work,and one tailored approach in the Fourier domain that is specific to CT-reconstruction.We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on.Finally,we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically,discuss their advantages and disadvantages and investigate the effect of discretization errors at differentresolutions. 展开更多
关键词 Inverse problems regularization Computerized tomography(CT) Machine learning
在线阅读 下载PDF
A Modified Tikhonov Regularization Method for a Cauchy Problem of the Biharmonic Equation
14
作者 Fan YANG Jianming XU Xiaoxiao LI 《Journal of Mathematical Research with Applications》 CSCD 2024年第3期359-386,共28页
In this paper,the Cauchy problem of biharmonic equation is considered.This problem is ill-posed,i.e.,the solution(if exists)does not depend on the measurable data.Firstly,we give the conditional stability result under... In this paper,the Cauchy problem of biharmonic equation is considered.This problem is ill-posed,i.e.,the solution(if exists)does not depend on the measurable data.Firstly,we give the conditional stability result under the a priori bound assumption for the exact solution.Secondly,a modified Tikhonov regularization method is used to solve this ill-posed problem.Under the a priori and the a posteriori regularization parameter choice rule,the error estimates between the regularization solutions and the exact solution are obtained.Finally,some numerical examples are presented to verify that our method is effective. 展开更多
关键词 Biharmonic equations inverse problem Cauchy problem Tikhonov regularization method
原文传递
Trigonometric Regularization and Continuation Method Based Time-Optimal Control of Hypersonic Vehicles
15
作者 LIN Yujie HAN Yanhua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期52-59,共8页
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy... Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently. 展开更多
关键词 hypersonic vehicle(HSV) optimal control trigonometric regularization method(TRM) continuation method
在线阅读 下载PDF
Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay
16
作者 Li Wang Xiaoyong Wang 《Energy Engineering》 EI 2024年第12期3953-3979,共27页
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ... Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption. 展开更多
关键词 Plug-in hybrid electric vehicles deep reinforcement learning energy management strategy deep deterministic policy gradient entropy regularization prioritized experience replay
在线阅读 下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
17
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 regularization Logistic Regression Model K-Means Clustering Analysis Elbow Rule Parameter Verification
在线阅读 下载PDF
A NOx Concentration Prediction Model Based on a Sparse Regularization Stochastic Configuration Network
18
作者 Aijun Yan Shenci Cao 《Instrumentation》 2024年第3期13-22,共10页
For accurate prediction of nitrogen oxides(NOx) concentration during the municipal solid waste incineration(MSWI) process, in this paper, a prediction modeling method based on a sparse regularization stochastic config... For accurate prediction of nitrogen oxides(NOx) concentration during the municipal solid waste incineration(MSWI) process, in this paper, a prediction modeling method based on a sparse regularization stochastic configuration network is proposed. The method combines Drop Connect regularization with L1 regularization. Based on the L1 regularization constraint stochastic configuration network output weights, Drop Connect regularization is applied to the input weights to introduce sparsity. A probability decay strategy based on network residuals is designed to address situations where the Drop Connect fixed drop probability affects model convergence. Finally, the generated sparse stochastic configuration network is used to establish the model, and is validated through experiments with standard datasets and actual data from an MSWI plant in Beijing. The experimental results prove that this modeling method exhibits high-precision prediction and generalization ability while effectively simplifying the model structure, which enables accurate prediction of NOx concentration. 展开更多
关键词 municipal solid waste incineration NOx concentration prediction stochastic configuration network sparse regularization
原文传递
3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization 被引量:4
19
作者 刘金钊 柳林涛 +1 位作者 梁星辉 叶周润 《Applied Geophysics》 SCIE CSCD 2015年第2期137-146,273,共11页
We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b... We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies. 展开更多
关键词 extrapolated Tikhonov regularization depth weighting gravity gradient tensor eieenvector
在线阅读 下载PDF
Numerical estimation of choice of the regularization parameter for NMR T2 inversion 被引量:2
20
作者 You-Long Zou Ran-Hong Xie Alon Arad 《Petroleum Science》 SCIE CAS CSCD 2016年第2期237-246,共10页
Nuclear Magnetic inversion is the basis of NMR Resonance (NMR) T2 logging interpretation. The regularization parameter selection of the penalty term directly influences the NMR T2 inversion result. We implemented b... Nuclear Magnetic inversion is the basis of NMR Resonance (NMR) T2 logging interpretation. The regularization parameter selection of the penalty term directly influences the NMR T2 inversion result. We implemented both norm smoothing and curvature smoothing methods for NMR T2 inversion, and compared the inversion results with respect to the optimal regular- ization parameters ((Xopt) which were selected by the dis- crepancy principle (DP), generalized cross-validation (GCV), S-curve, L-curve, and the slope of L-curve methods, respectively. The numerical results indicate that the DP method can lead to an oscillating or oversmoothed solution which is caused by an inaccurately estimated noise level. The (Xopt selected by the L-curve method is occa- sionally small or large which causes an undersmoothed or oversmoothed T2 distribution. The inversion results from GCV, S-curve and the slope of L-curve methods show satisfying inversion results. The slope of the L-curve method with less computation is more suitable for NMR T2 inversion. The inverted T2 distribution from norm smoothing is better than that from curvature smoothing when the noise level is high. 展开更多
关键词 NMR T2 inversion Tikhonov regularizationVariable substitution Levenberg-Marquardt method regularization parameter selection
原文传递
上一页 1 2 108 下一页 到第
使用帮助 返回顶部