期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem 被引量:1
1
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
在线阅读 下载PDF
An Improved Gorilla Troops Optimizer Based on Lens Opposition-Based Learning and Adaptive β-Hill Climbing for Global Optimization 被引量:1
2
作者 Yaning Xiao Xue Sun +3 位作者 Yanling Guo Sanping Li Yapeng Zhang Yangwei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期815-850,共36页
Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and ... Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and stability of GTOwill deterioratewhen the optimization problems to be solved becomemore complex and flexible.To overcome these defects and achieve better performance,this paper proposes an improved gorilla troops optimizer(IGTO).First,Circle chaotic mapping is introduced to initialize the positions of gorillas,which facilitates the population diversity and establishes a good foundation for global search.Then,in order to avoid getting trapped in the local optimum,the lens opposition-based learning mechanism is adopted to expand the search ranges.Besides,a novel local search-based algorithm,namely adaptiveβ-hill climbing,is amalgamated with GTO to increase the final solution precision.Attributed to three improvements,the exploration and exploitation capabilities of the basic GTOare greatly enhanced.The performance of the proposed algorithm is comprehensively evaluated and analyzed on 19 classical benchmark functions.The numerical and statistical results demonstrate that IGTO can provide better solution quality,local optimumavoidance,and robustness compared with the basic GTOand five other wellknown algorithms.Moreover,the applicability of IGTOis further proved through resolving four engineering design problems and training multilayer perceptron.The experimental results suggest that IGTO exhibits remarkable competitive performance and promising prospects in real-world tasks. 展开更多
关键词 Gorilla troops optimizer circle chaotic mapping lens opposition-based learning adaptiveβ-hill climbing
在线阅读 下载PDF
A Spider Monkey Optimization Algorithm Combining Opposition-Based Learning and Orthogonal Experimental Design
3
作者 Weizhi Liao Xiaoyun Xia +3 位作者 Xiaojun Jia Shigen Shen Helin Zhuang Xianchao Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3297-3323,共27页
As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the... As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems. 展开更多
关键词 Spider monkey optimization opposition-based learning orthogonal experimental design particle swarm
在线阅读 下载PDF
An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm
4
作者 Chen Zhang Liming Liu +5 位作者 Yufei Yang Yu Sun Jiaxu Ning Yu Zhang Changsheng Zhang Ying Guo 《Computers, Materials & Continua》 SCIE EI 2024年第6期5201-5223,共23页
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in... The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability. 展开更多
关键词 Flying foxes optimization(FFO)algorithm opposition-based learning niching techniques swarm intelligence metaheuristics evolutionary algorithms
在线阅读 下载PDF
An Opposition-Based Learning Adaptive Chaotic Particle Swarm Optimization Algorithm
5
作者 Chongyang Jiao Kunjie Yu Qinglei Zhou 《Journal of Bionic Engineering》 CSCD 2024年第6期3076-3097,共22页
To solve the shortcomings of Particle Swarm Optimization(PSO)algorithm,local optimization and slow convergence,an Opposition-based Learning Adaptive Chaotic PSO(LCPSO)algorithm was presented.The chaotic elite oppositi... To solve the shortcomings of Particle Swarm Optimization(PSO)algorithm,local optimization and slow convergence,an Opposition-based Learning Adaptive Chaotic PSO(LCPSO)algorithm was presented.The chaotic elite opposition-based learning process was applied to initialize the entire population,which enhanced the quality of the initial individuals and the population diversity,made the initial individuals distribute in the better quality areas,and accelerated the search efficiency of the algorithm.The inertia weights were adaptively customized during evolution in the light of the degree of premature convergence to balance the local and global search abilities of the algorithm,and the reverse search strategy was introduced to increase the chances of the algorithm escaping the local optimum.The LCPSO algorithm is contrasted to other intelligent algorithms on 10 benchmark test functions with different characteristics,and the simulation experiments display that the proposed algorithm is superior to other intelligence algorithms in the global search ability,search accuracy and convergence speed.In addition,the robustness and effectiveness of the proposed algorithm are also verified by the simulation results of engineering design problems. 展开更多
关键词 PSO opposition-based learning Chaotic motion Inertia weight Intelligent algorithm
在线阅读 下载PDF
LOEV-APO-MLP:Latin Hypercube Opposition-Based Elite Variation Artificial Protozoa Optimizer for Multilayer Perceptron Training
6
作者 Zhiwei Ye Dingfeng Song +7 位作者 Haitao Xie Jixin Zhang Wen Zhou Mengya Lei Xiao Zheng Jie Sun Jing Zhou Mengxuan Li 《Computers, Materials & Continua》 2025年第12期5509-5530,共22页
The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite ... The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite its widespread success,training MLPs often encounter significant challenges,including susceptibility to local optima,slow convergence rates,and high sensitivity to initial weight configurations.To address these issues,this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer(LOEV-APO),which enhances both global exploration and local exploitation simultaneously.LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling(LHS)with Opposition-Based Learning(OBL),thus improving the diversity and coverage of the initial population.Moreover,an Elite Protozoa Variation Strategy(EPVS)is incorporated,which applies differential mutation operations to elite candidates,accelerating convergence and strengthening local search capabilities around high-quality solutions.Extensive experiments are conducted on six classification tasks and four function approximation tasks,covering a wide range of problem complexities and demonstrating superior generalization performance.The results demonstrate that LOEV-APO consistently outperforms nine state-of-the-art metaheuristic algorithms and two gradient-based methods in terms of convergence speed,solution accuracy,and robustness.These findings suggest that LOEV-APO serves as a promising optimization tool for MLP training and provides a viable alternative to traditional gradient-based methods. 展开更多
关键词 Artificial protozoa optimizer multilayer perceptron Latin hypercube sampling opposition-based learning neural network training
在线阅读 下载PDF
Hybrid Modified Chimp Optimization Algorithm and Reinforcement Learning for Global Numeric Optimization 被引量:1
7
作者 Mohammad ShDaoud Mohammad Shehab +1 位作者 Laith Abualigah Cuong-Le Thanh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2896-2915,共20页
Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the ... Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the local search technique which leads to a loss of diversity,getting stuck in a local minimum,and procuring premature convergence.In response to these defects,this paper proposes an improved ChOA algorithm based on using Opposition-based learning(OBL)to enhance the choice of better solutions,written as OChOA.Then,utilizing Reinforcement Learning(RL)to improve the local research technique of OChOA,called RLOChOA.This way effectively avoids the algorithm falling into local optimum.The performance of the proposed RLOChOA algorithm is evaluated using the Friedman rank test on a set of CEC 2015 and CEC 2017 benchmark functions problems and a set of CEC 2011 real-world problems.Numerical results and statistical experiments show that RLOChOA provides better solution quality,convergence accuracy and stability compared with other state-of-the-art algorithms. 展开更多
关键词 Chimp optimization algorithm Reinforcement learning Disruption operator opposition-based learning CEC 2011 real-world problems CEC 2015 and CEC 2017 benchmark functions problems
在线阅读 下载PDF
Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System 被引量:2
8
作者 Laith Abualigah Serdar Ekinci +1 位作者 Davut Izci Raed Abu Zitar 《Intelligent Automation & Soft Computing》 2023年第11期169-183,共15页
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-... Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area. 展开更多
关键词 Cruise control system FOPID controller artificial hummingbird algorithm elite opposition-based learning
在线阅读 下载PDF
Elitist-opposition-based artificial electric field algorithm for higher-order neural network optimization and financial time series forecasting
9
作者 Sarat Chandra Nayak Satchidananda Dehuri Sung-Bae Cho 《Financial Innovation》 2024年第1期4115-4157,共43页
This study attempts to accelerate the learning ability of an artificial electric field algorithm(AEFA)by attributing it with two mechanisms:elitism and opposition-based learning.Elitism advances the convergence of the... This study attempts to accelerate the learning ability of an artificial electric field algorithm(AEFA)by attributing it with two mechanisms:elitism and opposition-based learning.Elitism advances the convergence of the AEFA towards global optima by retaining the fine-tuned solutions obtained thus far,and opposition-based learning helps enhance its exploration ability.The new version of the AEFA,called elitist opposition leaning-based AEFA(EOAEFA),retains the properties of the basic AEFA while taking advantage of both elitism and opposition-based learning.Hence,the improved version attempts to reach optimum solutions by enabling the diversification of solutions with guaranteed convergence.Higher-order neural networks(HONNs)have single-layer adjustable parameters,fast learning,a robust fault tolerance,and good approximation ability compared with multilayer neural networks.They consider a higher order of input signals,increased the dimensionality of inputs through functional expansion and could thus discriminate between them.However,determining the number of expansion units in HONNs along with their associated parameters(i.e.,weight and threshold)is a bottleneck in the design of such networks.Here,we used EOAEFA to design two HONNs,namely,a pi-sigma neural network and a functional link artificial neural network,called EOAEFA-PSNN and EOAEFA-FLN,respectively,in a fully automated manner.The proposed models were evaluated on financial time-series datasets,focusing on predicting four closing prices,four exchange rates,and three energy prices.Experiments,comparative studies,and statistical tests were conducted to establish the efficacy of the proposed approach. 展开更多
关键词 AEFA ELITISM opposition-based learning Improved AEFA HONN PSNN FLANN Financial forecasting
在线阅读 下载PDF
决策学习型蜣螂优化算法的无人机协同路径规划 被引量:1
10
作者 张乐 胡毅文 +2 位作者 杨红 杨超 马宏远 《计算机应用研究》 北大核心 2025年第1期196-204,共9页
针对多无人机协同路径规划问题,提出了一种决策学习型蜣螂优化算法(DLDBO)。传统蜣螂优化算法(DBO)种群之间缺乏信息互换,容易陷入局部最优解。因此,利用Pearson相关系数计算个体之间的相似性,通过相似性指标判断并作出决策:若不相似,... 针对多无人机协同路径规划问题,提出了一种决策学习型蜣螂优化算法(DLDBO)。传统蜣螂优化算法(DBO)种群之间缺乏信息互换,容易陷入局部最优解。因此,利用Pearson相关系数计算个体之间的相似性,通过相似性指标判断并作出决策:若不相似,利用折射反向学习计算得到候选解,在一定程度上提高个体之间影响的同时增强算法跳出局部最优的能力;若相似,利用所提出的链式邻近学习引导蜣螂个体,增加影响个体更新的因素,充分促进个体之间的信息交流。在CEC2017测试套件的29个测试函数上进行了充分的对比实验,结果表明,DLDBO性能明显优于其他六种先进的变体算法。利用DLDBO规划无人机群的飞行路径,最终能够得到较为理想的协同路径并且有效避开威胁,优于其余三种优秀的协同路径规划算法,满足了无人机协同飞行的需求。 展开更多
关键词 蜣螂优化算法 折射反向学习 链式邻近学习 无人机协同路径规划
在线阅读 下载PDF
基于折射反向学习机制的樽海鞘群算法 被引量:1
11
作者 钱谦 翟豪 +2 位作者 潘家文 冯勇 李英娜 《小型微型计算机系统》 北大核心 2025年第1期119-127,共9页
由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优... 由于樽海鞘群算法(SSA)容易陷入局部最优,导致算法收敛能力较差,为了提高算法的搜索性能,本文提出了一种基于折射反向学习的樽海鞘群算法rOSSA.算法根据折射反向学习在解空间中获得反向解,使搜索代理获得更多选择机会,增加算法找到更优解的可能性.此外,在折射反向学习中引入概率扰动机制,通过概率扰动机制使搜索代理在迭代后期能够跳出局部最优,从而增强算法的全局搜索能力.最后,通过9个单峰、多峰、复合测试函数和一个工程计算问题将rOSSA与近年提出的一些主流算法进行比较,实验结果有效证明了本文改进算法的有效性. 展开更多
关键词 樽海鞘群算法 搜索性能 折射反向学习 概率扰动
在线阅读 下载PDF
融合多策略的改进鹈鹕优化算法 被引量:1
12
作者 李智杰 赵铁柱 +3 位作者 李昌华 介军 石昊琦 杨辉 《控制工程》 北大核心 2025年第7期1184-1197,1206,共15页
针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反... 针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反向学习策略初始化鹈鹕种群,在增加种群多样性的同时为算法寻优能力的提升打下基础;然后,在鹈鹕逼近猎物阶段引入非线性惯性权重因子以提高算法的收敛速度;最后,引入樽海鞘群算法的领导者策略以协调算法的全局搜索能力和局部寻优能力。实验测试了单一改进策略的改进效果,并将IPOA与其他9种优化算法进行了对比。实验结果证明了各改进策略的有效性和IPOA的优越性和鲁棒性。 展开更多
关键词 鹈鹕优化算法 帐篷混沌映射 折射反向学习 非线性惯性权重因子 樽海鞘群算法
原文传递
基于井下参数的SCNGO-SVM卡钻预警方法研究 被引量:2
13
作者 张涛 夏鹏 +2 位作者 李军 王彪 詹家豪 《石油机械》 北大核心 2025年第1期20-27,36,共9页
针对卡钻风险预测的问题,提出了一种融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)和支持向量机(SVM)的卡钻预警模型。针对北方苍鹰优化算法(NGO)容易陷入局部最优以及初始解的分布具有随机性和非均匀性的特性,引入折射反向学习... 针对卡钻风险预测的问题,提出了一种融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)和支持向量机(SVM)的卡钻预警模型。针对北方苍鹰优化算法(NGO)容易陷入局部最优以及初始解的分布具有随机性和非均匀性的特性,引入折射反向学习策略初始化北方苍鹰算法个体、正余弦策略替换原始苍鹰算法的勘察阶段的位置更新公式和正余弦策略的步长搜索因子进行改进,将SCNGO用于SVM寻参,并将模型SCNGO-SVM应用于卡钻预警。研究结果表明:SCNGO在收敛速度、寻优精度等方面明显优于NGO、WOA(鲸鱼优化算法)及SSA(麻雀优化算法);该卡钻预警模型对于卡钻的预测准确率高达97.33%,相较于WOA-SVM、NGO-SVM、SSA-SVM卡钻预警模型,在预测准确率和运算速度上均有较大的提升。该模型为卡钻的预测及其工程应用提供了理论指导。 展开更多
关键词 卡钻预警模型 北方苍鹰优化算法 性能测试 折射反向学习策略 正余弦策略
在线阅读 下载PDF
基于改进蜣螂优化算法的巷战搜救路径规划 被引量:1
14
作者 雷富强 成政 +1 位作者 薛正雨 关鹏 《计算机工程与应用》 北大核心 2025年第19期320-335,共16页
针对巷战环境下搜救路径规划中传统蜣螂优化算法(DBO)在全局搜索稳定性和陷入局部最优等问题,提出一种基于混合策略的改进蜣螂优化(IDBO)算法,以提升搜救过程中的路径规划效率与可靠性。引入折射反向学习与精英选择策略,增强种群多样性... 针对巷战环境下搜救路径规划中传统蜣螂优化算法(DBO)在全局搜索稳定性和陷入局部最优等问题,提出一种基于混合策略的改进蜣螂优化(IDBO)算法,以提升搜救过程中的路径规划效率与可靠性。引入折射反向学习与精英选择策略,增强种群多样性和全局搜索能力;在滚球阶段结合鱼鹰优化算法(OOA)和最优解的耦合,解决了传统算法依赖最差个体支持的缺陷,增强算法在复杂地形中的全局搜索能力;在繁殖阶段引入动态选择机制与自适应t分布策略,平衡全局探索和局部开发,以适应搜救任务中对搜索精度和速度的双重需求;在觅食阶段结合雅克比曲线,提升算法跳出局部最优的能力,使算法能够有效应对巷战环境中的多种不确定因素。通过在CEC2005函数集上的性能测试,IDBO算法在全局搜索能力和收敛精度方面均优于DBO算法。在巷战搜救仿真环境下的路径规划实验中,静态环境下简单与复杂栅格地图下IDBO算法规划最短路径分别为27.841和57.256,较DBO算法分别缩短2.57%和15.35%;动态环境下最短路径为29.213和59.367,较DBO算法缩短3.85%与14.37%,进一步验证了IDBO算法在巷战搜救路径规划中的有效性和稳定性。 展开更多
关键词 路径规划 巷战搜救 蜣螂优化算法 折射反向学习 雅克比曲线 Wilcoxon秩和检验
在线阅读 下载PDF
基于不确定需求和服务效用的应急物资配送中心选址研究
15
作者 万孟然 叶春明 +1 位作者 彭大江 董君 《运筹与管理》 北大核心 2025年第4期106-112,I0034-I0047,共21页
为加快灾后应急物资的快速分配,减少受灾地区人员因未得到服务而产生的伤害,本文提出了一种基于不确定需求和服务效用的应急物资配送中心选址多目标优化模型。该模型以最大化受灾区域各需求点的整体服务效用、最小化救援行动的总成本为... 为加快灾后应急物资的快速分配,减少受灾地区人员因未得到服务而产生的伤害,本文提出了一种基于不确定需求和服务效用的应急物资配送中心选址多目标优化模型。该模型以最大化受灾区域各需求点的整体服务效用、最小化救援行动的总成本为目标,力求在复杂多变的灾后环境中提升应急响应效率与资源配置公平性。此外,考虑到灾后实际需求常具有模糊性和不确定性,本文引入模糊数对各需求点的物资需求进行建模,使模型更贴近现实决策场景。为求解该多目标优化问题,提出了基于折射反向学习的非支配排序鲸鱼优化算法(Refracted Opposition-based Learning for Non-dominated Sorting Whale Optimization Algorithm,ROLNSWOA)。并通过中国上海为背景的真实案例,与非支配排序鲸鱼优化算法、非支配排序遗传算法II、强度帕累托进化算法Ⅱ、基于分解的多目标进化算法和多目标粒子群算法进行比较,验证了ROLNSWOA算法的性能和应用价值。 展开更多
关键词 模糊需求 应急物资配送中心选址 服务效用 基于折射反向学习的非支配排序鲸鱼优化算法
在线阅读 下载PDF
Ocular image-based deep learning for predicting refractive error:A systematic review 被引量:1
16
作者 Samantha Min Er Yew Yibing Chen +5 位作者 Jocelyn Hui Lin Goh David Ziyou Chen Marcus Chun Jin Tan Ching-Yu Cheng Victor Teck Chang Koh Yih Chung Tham 《Advances in Ophthalmology Practice and Research》 2024年第3期164-172,共9页
ackground:Uncorrected refractive error is a major cause of vision impairment worldwide and its increasing prevalent necessitates effective screening and management strategies.Meanwhile,deep learning,a subset of Artifi... ackground:Uncorrected refractive error is a major cause of vision impairment worldwide and its increasing prevalent necessitates effective screening and management strategies.Meanwhile,deep learning,a subset of Artificial Intelligence,has significantly advanced ophthalmological diagnostics by automating tasks that required extensive clinical expertise.Although recent studies have investigated the use of deep learning models for refractive power detection through various imaging techniques,a comprehensive systematic review on this topic is has yet be done.This review aims to summarise and evaluate the performance of ocular image-based deep learning models in predicting refractive errors.Main text:We search on three databases(PubMed,Scopus,Web of Science)up till June 2023,focusing on deep learning applications in detecting refractive error from ocular images.We included studies that had reported refractive error outcomes,regardless of publication years.We systematically extracted and evaluated the continuous outcomes(sphere,SE,cylinder)and categorical outcomes(myopia),ground truth measurements,ocular imaging modalities,deep learning models,and performance metrics,adhering to PRISMA guidelines.Nine studies were identified and categorised into three groups:retinal photo-based(n=5),OCT-based(n=1),and external ocular photo-based(n=3).For high myopia prediction,retinal photo-based models achieved AUC between 0.91 and 0.98,sensitivity levels between 85.10%and 97.80%,and specificity levels between 76.40%and 94.50%.For continuous prediction,retinal photo-based models reported MAE ranging from 0.31D to 2.19D,and R^(2) between 0.05 and 0.96.The OCT-based model achieved an AUC of 0.79–0.81,sensitivity of 82.30%and 87.20%and specificity of 61.70%–68.90%.For external ocular photo-based models,the AUC ranged from 0.91 to 0.99,sensitivity of 81.13%–84.00%and specificity of 74.00%–86.42%,MAE ranges from 0.07D to 0.18D and accuracy ranges from 81.60%to 96.70%.The reported papers collectively showed promising performances,in particular the retinal photo-based and external eye photo-based DL models.Conclusions:The integration of deep learning model and ocular imaging for refractive error detection appear promising.However,their real-world clinical utility in current screening workflow have yet been evaluated and would require thoughtful consideration in design and implementation. 展开更多
关键词 Deep learning Artificial Intelligence refractive Error Retinal images OPTICAL Coherence Tomography PHOTOrefractION Ocular images PREDICTION
原文传递
A Novel Approach Based on Recuperated Seed Search Optimization for Solving Mechanical Engineering Design Problems
17
作者 Sumika Chauhan Govind Vashishtha +1 位作者 Riya Singh Divesh Bharti 《Computer Modeling in Engineering & Sciences》 2025年第7期309-343,共35页
This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques strug... This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques struggle with slow convergence and suboptimal solutions due to complex,nonlinear natures.The Sperm Swarm Optimization(SSO)algorithm,which mimics the sperm’s movement to reach an egg,is one such technique.To improve SSO,researchers combined it with three strategies:opposition-based learning(OBL),Cauchy mutation(CM),and position clamping.OBL introduces diversity to SSO by exploring opposite solutions,speeding up convergence.CM enhances both exploration and exploitation capabilities throughout the optimization process.This combined approach,RSSO,has been rigorously tested on standard benchmark functions,real-world engineering problems,and through statistical analysis(Wilcoxon test).The results demonstrate that RSSO significantly outperforms other optimization algorithms,achieving faster convergence and better solutions.The paper details the RSSO algorithm,discusses its implementation,and presents comparative results that validate its effectiveness in solving complex engineering design challenges. 展开更多
关键词 Local search Cauchy mutation opposition-based learning EXPLORATION EXPLOITATION
在线阅读 下载PDF
基于改进登山队优化算法的无人机三维路径规划
18
作者 弓晓霞 郝海霞 +1 位作者 程威 刘吉 《测控技术》 2025年第6期46-52,共7页
为解决传统登山队优化(Mountaineering Team-Based Optimization, MTBO)算法在无人机三维路径规划中易陷入局部最优和收敛速度慢的问题,提出一种基于多种策略改进登山队优化(Improved MTBO,IMTBO)算法的无人机路径规划方法。首先,结合... 为解决传统登山队优化(Mountaineering Team-Based Optimization, MTBO)算法在无人机三维路径规划中易陷入局部最优和收敛速度慢的问题,提出一种基于多种策略改进登山队优化(Improved MTBO,IMTBO)算法的无人机路径规划方法。首先,结合三维地形与障碍物信息,通过数字高程模型(Digital Elevation Model, DEM)进行三维环境建模,设计包含路径长度、高度代价和平滑性的加权目标函数,将路径规划问题转换为多目标优化问题;其次,采用Tent混沌映射和折射反向学习来增强初始种群的多样性,采用正余弦策略来替换灾害威胁阶段原始的位置更新公式,以平衡算法的全局搜索和局部开发能力,采用高斯变异策略来替换队员更新阶段的随机生成新队员机制,以提升算法的局部开发能力;最后,将IMTBO算法应用于无人机三维路径规划,实验结果表明,相较于其他4种路径规划算法,在相同的环境下,IMTBO算法规划的路径更短、搜索效率更高。 展开更多
关键词 登山队优化算法 Tent混沌映射 折射反向学习 正余弦策略 高斯变异 三维路径规划
在线阅读 下载PDF
Innovative Approaches to Task Scheduling in Cloud Computing Environments Using an Advanced Willow Catkin Optimization Algorithm
19
作者 Jeng-Shyang Pan Na Yu +3 位作者 Shu-Chuan Chu An-Ning Zhang Bin Yan Junzo Watada 《Computers, Materials & Continua》 2025年第2期2495-2520,共26页
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource... The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment. 展开更多
关键词 Willow catkin optimization algorithm cloud computing task scheduling opposition-based learning strategy
在线阅读 下载PDF
基于改进猎人猎物优化算法的煤矿开采沉陷预计模型参数反演研究
20
作者 朱慕谦 余庆 郭庆彪 《中国矿业》 北大核心 2025年第8期152-160,共9页
概率积分模型是分析煤炭开采引起地表变形规律的重要数学模型,通过概率积分模型可预计开采沉陷的关键参数,如何快速且准确地获取开采沉陷预计参数一直是学者关注的重点。为克服传统方法在这一领域的局限性,本文提出了一种基于改进猎人... 概率积分模型是分析煤炭开采引起地表变形规律的重要数学模型,通过概率积分模型可预计开采沉陷的关键参数,如何快速且准确地获取开采沉陷预计参数一直是学者关注的重点。为克服传统方法在这一领域的局限性,本文提出了一种基于改进猎人猎物算法(IHPO)的概率积分参数反演模型。IHPO是在标准猎人猎物算法(HPO)的基础上,引入Cubic映射初始化、透镜成像折射反向学习及强制切换策略等改进策略,显著增强了算法群体智能优化能力。将IHPO应用于概率积分参数反演,构建了基于IHPO的概率积分参数反演模型。模拟实验结果表明:IHPO反演概率积分预测参数相对误差控制在1.54%以内,参数拟合中误差不超过3.32,相较于HPO,其反演结果更为精确。此外,IHPO的参数反演模型具有良好的鲁棒性,能够抵御一定的粗差干扰、随机误差干扰及观测点缺失的影响,同时具有较强的全局搜索性能。在实际应用中,以顾桥煤矿1414(1)工作面为例,利用IHPO对其进行参数反演,反演结果的参数拟合中误差最大不超过8.92,其中,参数q、tanβ、b、θ的拟合中误差均小于0.50,体现了极高的准确性。基于IHPO预测的下沉值拟合中误差及水平移动值拟合中误差的平均值为93.99 mm,充分满足了实际工作面的精度需求,验证了该模型在煤炭开采沉陷预测中的有效性和实用性。 展开更多
关键词 开采沉陷 概率积分模型 猎人猎物优化算法 Cubic映射 透镜成像折射反向学习 强制切换策略
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部