Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,w...Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,we compare these moral reorientation processes to contextualize two different moral programmes of the scientific reform movement and their sociopolitical conditions.We argue that such an explication of moral programmes is vital to build legitimacy and reflect on value-prioritization.While epistemic programmes are foregrounded,moral programmes also play a crucial role in shaping science,and different moral programmes offer different promises for the sustained support of credible,reliable,fair and equitable science.We discuss the virtue and equity programmes,and through interrogating both programmes in relation to the Reformation,we display the relevance of sociopolitical contexts to how key values operate in science and generate orders of worth.These insights aim to stimulate debate about the conditions for opting for either of these moral programmes.In our view,not all moral programmes offer equal promise for the sustained support of credible,equitable and fair science.展开更多
The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were ...The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were used to investigate the effects of temperature(700–1100℃),CO_(2)(3%–10%),and H_(2)O(1%–9%)concentrations on CH_(4) conversion efficiency.Results indicate that CH_(4) conversion exceeds 90%at temperatures above 1000℃,with CO_(2) and H_(2)O concentrations at 9%and 5%,respectively.During the reforming process,introducing CO_(2) provides additional oxygen,facilitating the oxidation of CH_(4),while H_(2)O enhances H_(2) production through the steam reforming pathway.Experimental findings reveal a CH_(4) conversion of 85.83%with a H_(2)/CO ratio of 5.44 at 1050℃.In addition,an optimal H_(2)O concentration of 6%yields the highest CH_(4) conversion of 84.24%,while CO_(2) exhibits minimal effects on promoting the reforming process.Increasing the metallization rate of pellets from 43%to 92%significantly enhances CH_(4) reforming.This is mainly due to the fact that metallized iron is vital in promoting CH_(4) dissociation and improving syngas yield by providing active sites for the redox cycle of CO_(2) and H_(2)O.展开更多
The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established b...The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established by the World Health Organization(WHO). Reform in China has demonstrated the unwavering confidence and utmost determination of the Chinese government and the Chinese transplantation community. The year 2015 marked a historic turning point when voluntary donations from Chinese citizens became the sole legitimate source for organ transplantation. Since 2015, China has gradually established and refined the “Chinese Mode” and “China System” for organ donation and transplantation, fulfilling its political pledge of reform, and has garnered international recognition, and fostered a social culture which promotes organ donation. This article reviewed the history of reform on organ donation and transplantation in China, presented a new pattern of establishment of organ donation system in the new era of the country, and the direction of advances in the future.展开更多
This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model...This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.展开更多
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner...The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.展开更多
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra...CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.展开更多
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni...With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.展开更多
College students’safety education is an important part of the fundamental task of fostering virtue through education in colleges and universities.A questionnaire survey at J University shows that the popularization d...College students’safety education is an important part of the fundamental task of fostering virtue through education in colleges and universities.A questionnaire survey at J University shows that the popularization degree and teaching satisfaction of college students’safety education are relatively high,but the teaching content and teaching forms still need improvement.With the rapid development of artificial intelligence technology and considering the char-acteristics of college students’online learning in the new era,carrying out the SPOC+PBL blended teaching reform not only helps to enhance the effectiveness of theoretical and practical teaching but also contributes to optimizing the teach-ing evaluation and feedback mechanism and strengthening students’problem-solving abilities.Therefore,we should adhere to the goal orientation,meticulously design the teaching plan,highlight the student-centered approach,focus on integrating teaching resources,strengthen process management,promptly provide feedback and guidance,empower with data,and continuously improve teaching evaluation.Thus,a student-centered SPOC+PBL blended teaching sys-tem can be constructed to empower the transformation and innovation of talent cultivation in higher education.展开更多
When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent o...When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent of the global GDP and two-thirds of the world population,are once again navigating a turbulent era marked by geopolitical rivalry,economic fragmentation and widening inequality.展开更多
High density polyethylene(HDPE)pyrolysis and in-line oxidative steam reforming was carried out in a two-step reaction system consisting of a conical spouted bed reactor and a fluidized bed reactor.Continuous plastic p...High density polyethylene(HDPE)pyrolysis and in-line oxidative steam reforming was carried out in a two-step reaction system consisting of a conical spouted bed reactor and a fluidized bed reactor.Continuous plastic pyrolysis was conducted at 550℃ and the volatiles formed were fed in-line to the oxidative steam reforming step(space-time 3.12 gcat min gHDPE−1;ER=0.2 and steam/plastic=3)operating at 700℃.The influence Ni based reforming catalyst support(Al_(2)O_(3),ZrO_(2),SiO_(2))and promoter(CeO_(2),La_(2)O_(3))have on HDPE pyrolysis volatiles conversion and H_(2) production was assessed.The catalysts were prepared by the wet impregnation and they were characterized by means of N_(2) adsorption-desorption,X-ray fluorescence,temperature-programmed reduction and X-ray powder diffraction.A preliminary study on coke deposition and the deterioration of catalysts properties was carried out,by analyzing the tested catalysts through temperature programmed oxidation of coke,transmission electron microscopy,and N_(2) adsorption-desorption.Among the supports tested,ZrO_(2) showed the best performance,attaining conversion and H_(2) production values of 92.2% and 12.8 wt%,respectively.Concerning promoted catalysts,they led to similar conversion values(around 90%),but significant differences were observed in H_(2) production.Thus,higher H_(2) productions were obtained on the Ni/La_(2)O_(3)-Al_(2)O_(3) catalyst(12.1 wt%)than on CeO_(2) promoted catalysts due to La_(2)O_(3) capability for enhancing water adsorption on the catalyst surface.展开更多
It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.He...It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.Here,we propose to boost the coke-tolerance of Co catalyst by applying a contact potential introduced by immiscible Ag clusters.We demonstrate that Co clusters separated by neighboring Ag on Yttria-stabilized zirconia(YSZ)support can serve as a coke-and sintering-resistant DRM catalyst under diluent gas-free,stoichiometric CH_(4) and CO_(2) feeding,1123 K and 20 bar.Since immiscible metals are ubiquitous and metal contact influences surface work function in general,this new design concept may have general implications for tailoring catalytic properties of metals.展开更多
The integrated development of nursing education and innovation&entrepreneurship education is a crucial approach to cultivating high-quality nursing professionals and advancing the discipline of nursing.This paper ...The integrated development of nursing education and innovation&entrepreneurship education is a crucial approach to cultivating high-quality nursing professionals and advancing the discipline of nursing.This paper discusses the main issues currently faced in the integration process and provides reform suggestions from six aspects:curriculum system,teaching methods,practical teaching platforms,project competitions,faculty development,and evaluation systems.These explorations aim to offer theoretical support and practical references for promoting the deep integration of nursing education and innovation&entrepreneurship education,ultimately enhancing students’innovation and entrepreneurial capabilities.展开更多
CO_(2) and CH_(4) as major causes of global warming could both be eliminated to produce syngas undermild conditions through dry reforming methane driven by electromagnetic induction heating(EMIH-controlled DRM).Using ...CO_(2) and CH_(4) as major causes of global warming could both be eliminated to produce syngas undermild conditions through dry reforming methane driven by electromagnetic induction heating(EMIH-controlled DRM).Using EMIH-configured characterization and density functional theory,it is shownthat the EMIH-induced negative electric field at the electromagnetic interface facilitates CO_(2) dissociation and atomic oxygen transfer,which is the source of the promoting effect of EMIH.By employing pure H2 in a one-step high-temperature reduction process,the interfacial effect between the NiMgAl compound and the Fe fiber could be improved,thereby increasing the influence of the EMIH-induced electric field.Consequently,the R-NiMgAl/Fe fiber catalyst with EMIH achieves about 90%conversions of CH_(4) and CO_(2) at 500℃,while traditional heating-driven DRM on R-NiMgAl requires 700℃ to accomplish the same result.展开更多
This paper focuses on the application of artificial intelligence(AI)technology in the reform of college English teaching.By analyzing the current situation of college English teaching and the advantages of AI technolo...This paper focuses on the application of artificial intelligence(AI)technology in the reform of college English teaching.By analyzing the current situation of college English teaching and the advantages of AI technology,it explores how AI technology can be applied in different aspects of college English teaching,such as teaching content delivery,language practice,and assessment.It also discusses the challenges and opportunities brought by AI technology in the teaching reform process and proposes corresponding construction strategies to promote the deep integration of AI technology and college English teaching,aiming to improve the quality and efficiency of college English teaching and develop students’comprehensive English application ability.展开更多
Under the background of the continuous deepening of engineering education accreditation and the construction of emerging engineering disciplines,a digital platform-assisted teaching model was explored for the teaching...Under the background of the continuous deepening of engineering education accreditation and the construction of emerging engineering disciplines,a digital platform-assisted teaching model was explored for the teaching reform of the molecular biology course to effectively support the achievement of graduation requirements for bioengineering major and enhance the teaching outcomes of the molecular biology course.The teaching reform of this course took the 2022 cohort students majoring in bioengineering in Chengdu University as the practice object.The course evaluation method was improved by integrating digital platforms for process assessment,and real-world research and practical cases were incorporated into digital platforms to enrich teaching resources.Additionally,digital platforms were integrated throughout the entire teaching process(before,during,and after class),reshaping the instructional workflow into"pre-class online self-learning,in-class teacher-student interaction for deepening knowledge internalization,and practical case studies during and after class for strengthening application".The teaching reform results demonstrated that this teaching model significantly improved the attainment of course objectives,providing valuable experience for similar institutions to advance digital course reforms under the framework of engineering education accreditation.展开更多
Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of highe...Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of higher education,and it plays a vital role in cultivating professionalism and even the overall level of students.According to several problems existing in the current teaching practice of professional courses at our universities,in order to improve the teaching quality to meet the requirements in the emerging engineering era,related strategies and approaches for teaching reform are proposed as follows.Firstly,we advance the traditional classroom teaching into the modern one with equal double-subjects of teachers and students to cultivate the active and comprehensive learning ability of students.Secondly,the scientific research practice-oriented teaching method is introduced,and it contributes to connecting theory with engineering practice for students.Thirdly,the diversified course assessment system is explored,and a closed-loop quality control strategy is discussed on the basis of a questionnaire survey and face-to-face interview.By questionnaires and final assessments,it is clear that teaching qualities of related professional courses are satisfactory in recent years,and the methods and strategies can be widely applied to the teaching practice of other courses.展开更多
With the in-depth reform of labor education,the teaching of the Floriculture course in colleges and universities should be further optimized.Teachers need to actively introduce new educational concepts and teaching me...With the in-depth reform of labor education,the teaching of the Floriculture course in colleges and universities should be further optimized.Teachers need to actively introduce new educational concepts and teaching methods to better arouse college students’interest,strengthen their understanding and application of the knowledge they have learned,and improve the effect of talent cultivation.As a popular educational auxiliary tool at present,Internet technology can greatly enrich the content of the Floriculture course teaching in colleges and universities,expand the path of talent cultivation,and play a significant role in promoting the all-round development of college students.In view of this,this paper will analyze the teaching reform of the Floriculture course in colleges and universities under the background of“Internet+”and put forward some strategies,which are only for reference by colleagues.展开更多
Developing efficient photocatalysts to address collaborative energy and environmental crises still faces significant challenges.In this report,we present a highly efficient MXene–based photocatalyst,which is combined...Developing efficient photocatalysts to address collaborative energy and environmental crises still faces significant challenges.In this report,we present a highly efficient MXene–based photocatalyst,which is combined with MoS_(2)nano patches and TiO_(2)/Ti_(3)C_(2)(TTC)nanowires through hydrothermal treatment.Of all the composites tested,the optimized photocatalyst gave a remarkable H_(2)and revolving polylactic acid(PLA)into pyruvic acid(PA).Achieving a remarkable H_(2)evolution rate of 637.1 and 243.2μmol g^(−1)h^(−1),in the presence of TEOA and PLA as a sacrificial reagent under UV-vis(λ≥365 nm)light irradiation.The improved photocatalytic activity is a result of the combination of dual cocatalyst on the surface of TTC photocatalyst,which create an ideal synergistic effect for the generation of PA and the production of H_(2)simultaneously.The MoS_(2)TiO_(2)/Ti_(3)C_(2)(MTT)composite can generate more photoexcited charge carriers,leading to the generation of more active radicals,which may enhance the system's photocatalytic activity.This work aims at demonstrating its future significance and guide the scientific community towards a more efficient approach to commercializing H_(2)through photocatalysis.展开更多
Purpose:We aimed to measure the variation in researchers’knowledge and attitudes towards bibliometric indicators.The focus is on mapping the heterogeneity of this metric-wiseness within and between disciplines.Design...Purpose:We aimed to measure the variation in researchers’knowledge and attitudes towards bibliometric indicators.The focus is on mapping the heterogeneity of this metric-wiseness within and between disciplines.Design/methodology/approach:An exploratory survey is administered to researchers at the Sapienza University of Rome,one of Europe’s oldest and largest generalist universities.To measure metric-wiseness,we use attitude statements that are evaluated by a 5-point Likert scale.Moreover,we analyze documents of recent initiatives on assessment reform to shed light on how researchers’heterogeneous attitudes regarding and knowledge of bibliometric indicators are taken into account.Findings:We found great heterogeneity in researchers’metric-wiseness across scientific disciplines.In addition,within each discipline,we observed both supporters and critics of bibliometric indicators.From the document analysis,we found no reference to individual heterogeneity concerning researchers’metric wiseness.Research limitations:We used a self-selected sample of researchers from one Italian university as an exploratory case.Further research is needed to check the generalizability of our findings.Practical implications:To gain sufficient support for research evaluation practices,it is key to consider researchers’diverse attitudes towards indicators.Originality/value:We contribute to the current debate on reforming research assessment by providing a novel empirical measurement of researchers’knowledge and attitudes towards bibliometric indicators and discussing the importance of the obtained results for improving current research evaluation systems.展开更多
With the growing emphasis on digital technologies and cultural heritage in vocational education,the effective integration of modern technologies with traditional culture has become a central focus of current pedagogic...With the growing emphasis on digital technologies and cultural heritage in vocational education,the effective integration of modern technologies with traditional culture has become a central focus of current pedagogical reforms.This study explores strategies for incorporating Web3D technology and chuanzheng culture into the“reverse engineering technology”curriculum.By leveraging Web3D technology for the digital restoration and visualization of chuanzheng culture,students can engage deeply with its historical and technical significance in a virtual environment.Furthermore,integrating chuanzheng culture into the“reverse engineering technology”course enhances the content and instructional methods,fostering students′practical skills and cultural awareness.This innovative approach enriches the curriculum,increases student engagement,and strengthens cultural identity,offering a novel teaching model for vocational education.展开更多
基金supported by the German Federal Ministry of Education and Research(BMBF)through their award of the K?te Hamburger Kolleg‘Cultures of Research’Senior Research Fellowship to Bart Penders
文摘Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,we compare these moral reorientation processes to contextualize two different moral programmes of the scientific reform movement and their sociopolitical conditions.We argue that such an explication of moral programmes is vital to build legitimacy and reflect on value-prioritization.While epistemic programmes are foregrounded,moral programmes also play a crucial role in shaping science,and different moral programmes offer different promises for the sustained support of credible,reliable,fair and equitable science.We discuss the virtue and equity programmes,and through interrogating both programmes in relation to the Reformation,we display the relevance of sociopolitical contexts to how key values operate in science and generate orders of worth.These insights aim to stimulate debate about the conditions for opting for either of these moral programmes.In our view,not all moral programmes offer equal promise for the sustained support of credible,equitable and fair science.
基金financially supported by the National Natural Science Foundation of China(No.52004339)the Key Research and Development Project of Hunan Province,China(No.2022SK2075)+1 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202216)Central South University Graduate Student Independent Exploration and Innovation Project(2024ZZTS0378).
文摘The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were used to investigate the effects of temperature(700–1100℃),CO_(2)(3%–10%),and H_(2)O(1%–9%)concentrations on CH_(4) conversion efficiency.Results indicate that CH_(4) conversion exceeds 90%at temperatures above 1000℃,with CO_(2) and H_(2)O concentrations at 9%and 5%,respectively.During the reforming process,introducing CO_(2) provides additional oxygen,facilitating the oxidation of CH_(4),while H_(2)O enhances H_(2) production through the steam reforming pathway.Experimental findings reveal a CH_(4) conversion of 85.83%with a H_(2)/CO ratio of 5.44 at 1050℃.In addition,an optimal H_(2)O concentration of 6%yields the highest CH_(4) conversion of 84.24%,while CO_(2) exhibits minimal effects on promoting the reforming process.Increasing the metallization rate of pellets from 43%to 92%significantly enhances CH_(4) reforming.This is mainly due to the fact that metallized iron is vital in promoting CH_(4) dissociation and improving syngas yield by providing active sites for the redox cycle of CO_(2) and H_(2)O.
文摘The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established by the World Health Organization(WHO). Reform in China has demonstrated the unwavering confidence and utmost determination of the Chinese government and the Chinese transplantation community. The year 2015 marked a historic turning point when voluntary donations from Chinese citizens became the sole legitimate source for organ transplantation. Since 2015, China has gradually established and refined the “Chinese Mode” and “China System” for organ donation and transplantation, fulfilling its political pledge of reform, and has garnered international recognition, and fostered a social culture which promotes organ donation. This article reviewed the history of reform on organ donation and transplantation in China, presented a new pattern of establishment of organ donation system in the new era of the country, and the direction of advances in the future.
基金2024 Anqing Normal University University-Level Key Project(ZK2024062D)。
文摘This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.
文摘The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.
文摘CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.
基金supported by the Natural Science Foundation of Shanxi Province(202203021221155)the Foundation of National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal(J23-24-902)。
文摘With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.
基金“Research on Mental Health Education of Poor College Students-Based on the Perspective of‘New Campus’”Philosophy and Social Science Research Project of Universities in Jiangsu Province(2019SJB912)“Research on Mental Health Education of Poor College Students-Based on the Perspective of‘New Campus’”Special Topic of Ideological and Political Education for College Students in 2018(JDXGXB201801)“Research on College English Teaching Strategies from the Perspective of the Theory of Multiple Intelligences”Jiangsu Provincial University Philosophy and Social Sciences Research Project(2023SJYB2216)。
文摘College students’safety education is an important part of the fundamental task of fostering virtue through education in colleges and universities.A questionnaire survey at J University shows that the popularization degree and teaching satisfaction of college students’safety education are relatively high,but the teaching content and teaching forms still need improvement.With the rapid development of artificial intelligence technology and considering the char-acteristics of college students’online learning in the new era,carrying out the SPOC+PBL blended teaching reform not only helps to enhance the effectiveness of theoretical and practical teaching but also contributes to optimizing the teach-ing evaluation and feedback mechanism and strengthening students’problem-solving abilities.Therefore,we should adhere to the goal orientation,meticulously design the teaching plan,highlight the student-centered approach,focus on integrating teaching resources,strengthen process management,promptly provide feedback and guidance,empower with data,and continuously improve teaching evaluation.Thus,a student-centered SPOC+PBL blended teaching sys-tem can be constructed to empower the transformation and innovation of talent cultivation in higher education.
文摘When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent of the global GDP and two-thirds of the world population,are once again navigating a turbulent era marked by geopolitical rivalry,economic fragmentation and widening inequality.
文摘High density polyethylene(HDPE)pyrolysis and in-line oxidative steam reforming was carried out in a two-step reaction system consisting of a conical spouted bed reactor and a fluidized bed reactor.Continuous plastic pyrolysis was conducted at 550℃ and the volatiles formed were fed in-line to the oxidative steam reforming step(space-time 3.12 gcat min gHDPE−1;ER=0.2 and steam/plastic=3)operating at 700℃.The influence Ni based reforming catalyst support(Al_(2)O_(3),ZrO_(2),SiO_(2))and promoter(CeO_(2),La_(2)O_(3))have on HDPE pyrolysis volatiles conversion and H_(2) production was assessed.The catalysts were prepared by the wet impregnation and they were characterized by means of N_(2) adsorption-desorption,X-ray fluorescence,temperature-programmed reduction and X-ray powder diffraction.A preliminary study on coke deposition and the deterioration of catalysts properties was carried out,by analyzing the tested catalysts through temperature programmed oxidation of coke,transmission electron microscopy,and N_(2) adsorption-desorption.Among the supports tested,ZrO_(2) showed the best performance,attaining conversion and H_(2) production values of 92.2% and 12.8 wt%,respectively.Concerning promoted catalysts,they led to similar conversion values(around 90%),but significant differences were observed in H_(2) production.Thus,higher H_(2) productions were obtained on the Ni/La_(2)O_(3)-Al_(2)O_(3) catalyst(12.1 wt%)than on CeO_(2) promoted catalysts due to La_(2)O_(3) capability for enhancing water adsorption on the catalyst surface.
文摘It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.Here,we propose to boost the coke-tolerance of Co catalyst by applying a contact potential introduced by immiscible Ag clusters.We demonstrate that Co clusters separated by neighboring Ag on Yttria-stabilized zirconia(YSZ)support can serve as a coke-and sintering-resistant DRM catalyst under diluent gas-free,stoichiometric CH_(4) and CO_(2) feeding,1123 K and 20 bar.Since immiscible metals are ubiquitous and metal contact influences surface work function in general,this new design concept may have general implications for tailoring catalytic properties of metals.
基金supported by the Key Teaching Reform and Practice Project of Pingdingshan University in 2023,titled“Research and Practice on Innovation and Entrepreneurship Pathways for Medical Students under the New Medical Discipline Framework”(Project No.2023-JYZD15)Additionally,this study received support from the Henan Province Higher Education Teaching Reform Research and Practice Project,titled“Research on the Integration Path of Medical Education and Innovation&Entrepreneurship Education under the‘Project-based+Mentorship System’Model”(Project No.2024SJGLX0495).
文摘The integrated development of nursing education and innovation&entrepreneurship education is a crucial approach to cultivating high-quality nursing professionals and advancing the discipline of nursing.This paper discusses the main issues currently faced in the integration process and provides reform suggestions from six aspects:curriculum system,teaching methods,practical teaching platforms,project competitions,faculty development,and evaluation systems.These explorations aim to offer theoretical support and practical references for promoting the deep integration of nursing education and innovation&entrepreneurship education,ultimately enhancing students’innovation and entrepreneurial capabilities.
基金supported by the National Nature Science Foundation of China(Nos.22176187 and 22376193)the STS Program Supporting Project of Fujian Province&CAS(No.2023T3070)+1 种基金the Youth Innovation Promotion Association of CAS(No.2021304)the Guiding Project of Seizing the Commanding Heights of“Self-purifying City”(No.IUE-CERAE-202403).
文摘CO_(2) and CH_(4) as major causes of global warming could both be eliminated to produce syngas undermild conditions through dry reforming methane driven by electromagnetic induction heating(EMIH-controlled DRM).Using EMIH-configured characterization and density functional theory,it is shownthat the EMIH-induced negative electric field at the electromagnetic interface facilitates CO_(2) dissociation and atomic oxygen transfer,which is the source of the promoting effect of EMIH.By employing pure H2 in a one-step high-temperature reduction process,the interfacial effect between the NiMgAl compound and the Fe fiber could be improved,thereby increasing the influence of the EMIH-induced electric field.Consequently,the R-NiMgAl/Fe fiber catalyst with EMIH achieves about 90%conversions of CH_(4) and CO_(2) at 500℃,while traditional heating-driven DRM on R-NiMgAl requires 700℃ to accomplish the same result.
文摘This paper focuses on the application of artificial intelligence(AI)technology in the reform of college English teaching.By analyzing the current situation of college English teaching and the advantages of AI technology,it explores how AI technology can be applied in different aspects of college English teaching,such as teaching content delivery,language practice,and assessment.It also discusses the challenges and opportunities brought by AI technology in the teaching reform process and proposes corresponding construction strategies to promote the deep integration of AI technology and college English teaching,aiming to improve the quality and efficiency of college English teaching and develop students’comprehensive English application ability.
基金Supported by 2023 Major Project for Talent Cultivation and Teaching Reform in Higher Education of Sichuan Province(JG2023-77)2024-2026 Undergraduate Education and Teaching Reform Project of Chengdu University(XJJG-20242025264).
文摘Under the background of the continuous deepening of engineering education accreditation and the construction of emerging engineering disciplines,a digital platform-assisted teaching model was explored for the teaching reform of the molecular biology course to effectively support the achievement of graduation requirements for bioengineering major and enhance the teaching outcomes of the molecular biology course.The teaching reform of this course took the 2022 cohort students majoring in bioengineering in Chengdu University as the practice object.The course evaluation method was improved by integrating digital platforms for process assessment,and real-world research and practical cases were incorporated into digital platforms to enrich teaching resources.Additionally,digital platforms were integrated throughout the entire teaching process(before,during,and after class),reshaping the instructional workflow into"pre-class online self-learning,in-class teacher-student interaction for deepening knowledge internalization,and practical case studies during and after class for strengthening application".The teaching reform results demonstrated that this teaching model significantly improved the attainment of course objectives,providing valuable experience for similar institutions to advance digital course reforms under the framework of engineering education accreditation.
基金Undergraduate Education Reform Project of Dalian Maritime University(BJG-C2024072)Postgraduate Education Reform Project of Liaoning Province([2022]249-209)+1 种基金Education Reform Project of Dalian Minzu University(YB202547,YJS2024JG55,B2109)First-Class Undergraduate Courses of Liaoning Province([2022]302-1433,[2022]302-1452)。
文摘Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of higher education,and it plays a vital role in cultivating professionalism and even the overall level of students.According to several problems existing in the current teaching practice of professional courses at our universities,in order to improve the teaching quality to meet the requirements in the emerging engineering era,related strategies and approaches for teaching reform are proposed as follows.Firstly,we advance the traditional classroom teaching into the modern one with equal double-subjects of teachers and students to cultivate the active and comprehensive learning ability of students.Secondly,the scientific research practice-oriented teaching method is introduced,and it contributes to connecting theory with engineering practice for students.Thirdly,the diversified course assessment system is explored,and a closed-loop quality control strategy is discussed on the basis of a questionnaire survey and face-to-face interview.By questionnaires and final assessments,it is clear that teaching qualities of related professional courses are satisfactory in recent years,and the methods and strategies can be widely applied to the teaching practice of other courses.
基金Research on the Collaborative Path of Curriculum Ideology and Politics in Landscape Architecture Specialty under the Background of New Engineering(Project No.:NGJGH2024018)Empirical Research on the Training Mode of Compound Applied Talents with“Micro-Majors and Interdisciplinary Integration”under the Collaboration of Industry and Education(Project No.:NGJGH2024230)。
文摘With the in-depth reform of labor education,the teaching of the Floriculture course in colleges and universities should be further optimized.Teachers need to actively introduce new educational concepts and teaching methods to better arouse college students’interest,strengthen their understanding and application of the knowledge they have learned,and improve the effect of talent cultivation.As a popular educational auxiliary tool at present,Internet technology can greatly enrich the content of the Floriculture course teaching in colleges and universities,expand the path of talent cultivation,and play a significant role in promoting the all-round development of college students.In view of this,this paper will analyze the teaching reform of the Floriculture course in colleges and universities under the background of“Internet+”and put forward some strategies,which are only for reference by colleagues.
文摘Developing efficient photocatalysts to address collaborative energy and environmental crises still faces significant challenges.In this report,we present a highly efficient MXene–based photocatalyst,which is combined with MoS_(2)nano patches and TiO_(2)/Ti_(3)C_(2)(TTC)nanowires through hydrothermal treatment.Of all the composites tested,the optimized photocatalyst gave a remarkable H_(2)and revolving polylactic acid(PLA)into pyruvic acid(PA).Achieving a remarkable H_(2)evolution rate of 637.1 and 243.2μmol g^(−1)h^(−1),in the presence of TEOA and PLA as a sacrificial reagent under UV-vis(λ≥365 nm)light irradiation.The improved photocatalytic activity is a result of the combination of dual cocatalyst on the surface of TTC photocatalyst,which create an ideal synergistic effect for the generation of PA and the production of H_(2)simultaneously.The MoS_(2)TiO_(2)/Ti_(3)C_(2)(MTT)composite can generate more photoexcited charge carriers,leading to the generation of more active radicals,which may enhance the system's photocatalytic activity.This work aims at demonstrating its future significance and guide the scientific community towards a more efficient approach to commercializing H_(2)through photocatalysis.
基金supported by the Sapienza Universitàdi Roma Sapienza Awards no.6H15XNFS.
文摘Purpose:We aimed to measure the variation in researchers’knowledge and attitudes towards bibliometric indicators.The focus is on mapping the heterogeneity of this metric-wiseness within and between disciplines.Design/methodology/approach:An exploratory survey is administered to researchers at the Sapienza University of Rome,one of Europe’s oldest and largest generalist universities.To measure metric-wiseness,we use attitude statements that are evaluated by a 5-point Likert scale.Moreover,we analyze documents of recent initiatives on assessment reform to shed light on how researchers’heterogeneous attitudes regarding and knowledge of bibliometric indicators are taken into account.Findings:We found great heterogeneity in researchers’metric-wiseness across scientific disciplines.In addition,within each discipline,we observed both supporters and critics of bibliometric indicators.From the document analysis,we found no reference to individual heterogeneity concerning researchers’metric wiseness.Research limitations:We used a self-selected sample of researchers from one Italian university as an exploratory case.Further research is needed to check the generalizability of our findings.Practical implications:To gain sufficient support for research evaluation practices,it is key to consider researchers’diverse attitudes towards indicators.Originality/value:We contribute to the current debate on reforming research assessment by providing a novel empirical measurement of researchers’knowledge and attitudes towards bibliometric indicators and discussing the importance of the obtained results for improving current research evaluation systems.
基金supported by Fujian Provincial Education Science‘14th Five⁃Year Plan’2023 Annual Project(FJJKGZ23⁃055)2024 Fujian Social Science Foundation Program(FJ2024B146)2023 Fujian Provincial Vocational Education Research Project(GA2023007).
文摘With the growing emphasis on digital technologies and cultural heritage in vocational education,the effective integration of modern technologies with traditional culture has become a central focus of current pedagogical reforms.This study explores strategies for incorporating Web3D technology and chuanzheng culture into the“reverse engineering technology”curriculum.By leveraging Web3D technology for the digital restoration and visualization of chuanzheng culture,students can engage deeply with its historical and technical significance in a virtual environment.Furthermore,integrating chuanzheng culture into the“reverse engineering technology”course enhances the content and instructional methods,fostering students′practical skills and cultural awareness.This innovative approach enriches the curriculum,increases student engagement,and strengthens cultural identity,offering a novel teaching model for vocational education.