Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodi...Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites.展开更多
We report an interesting and abnormal electromagnetic phenomenon with regard to a terajet(TJ)that is generated in a reflection mode,which is realized by placing a dielectric scatterer onto a metal reflection plate.We ...We report an interesting and abnormal electromagnetic phenomenon with regard to a terajet(TJ)that is generated in a reflection mode,which is realized by placing a dielectric scatterer onto a metal reflection plate.We show that the introduction of an air hollow into metal reflection plate beneath the scatterer does not induce an expected decrease but an abnormal increase of focal length of the TJ by as much as more than three times.This abnormal phenomenon takes place in case that the air hollow is shallow and there exists a critical hollow depth for a given lateral size of air hollow.Larger than the critical depth,the phenomenon no longer occurs.It is explained from viewpoints of both ray optics in terms of role of relative portion of central waves in TJ formation and electromagnetic field theory with regard to hollow-induced phase singularities.展开更多
Curriculum ideological and political education is an important direction of higher education reform in the new era,aiming to realize the organic integration of professional knowledge imparting and ideological and poli...Curriculum ideological and political education is an important direction of higher education reform in the new era,aiming to realize the organic integration of professional knowledge imparting and ideological and political education.Taking preliminary landscape design course as an example,this paper expounded in detail the implementation of teaching reform from three aspects:the formulation of teaching objectives,the integration of teaching contents and the innovation of teaching methods.This paper systematically summarized the implementation effect of ideological and political education reform,and reflected on the excavation of ideological and political elements,integration degree,innovation of teaching methods,teachers’ideological and political ability and practical teaching.The exploration on curriculum ideological and political teaching provides useful reference and thinking for similar courses,and promotes the sustainable development of curriculum ideological and political education.展开更多
The power generation performance of a heaving body wave energy converter(HBWEC)can be enhanced through strategic deployment in proximity to natural or artificial coastal structures.In this study,coastal structures are...The power generation performance of a heaving body wave energy converter(HBWEC)can be enhanced through strategic deployment in proximity to natural or artificial coastal structures.In this study,coastal structures are represented by a partial reflection wall,enabling the device to harness additional reflected wave energy.However,the mechanisms by which the reflection coefficient and the clearance between the wall and the device affect energy conversion performance remain inadequately understood.This study experimentally investigates these effects.The findings demonstrate that the clearance impact on HBWEC power performance near partial reflection walls aligns with standing wave variation characteristics,with optimal positioning near the second antinode of the HBWEC's heaving natural period.Enhanced reflection coefficients improve energy conversion efficiency within the wave spectrum around the device's heaving natural period.Additionally,significant water sloshing observed within the clearance may diminish power performance,as verified through computational fluid dynamics(CFD)analysis.This phenomenon results from the multiplicative relationship of leeside clearance with 0.5λ(λis the wavelength).These insights suggest that practical engineering implementation requires balanced consideration of reflection coefficient,clearance,sloshing phenomenon,and heaving restriction system,rather than individual parameter optimization.展开更多
Global challenges like epidemics,wars,and climate change expose humans to life-and-death threats daily,triggering death anxiety and subsequent death reflection,which involves deliberate cognitive processing of mortali...Global challenges like epidemics,wars,and climate change expose humans to life-and-death threats daily,triggering death anxiety and subsequent death reflection,which involves deliberate cognitive processing of mortality.While some studies have shown the positive impacts of death reflection,such as on well-being,the relationship between death reflection and existential well-being,closely related to life and death,remains unexplored.This study aimed to investigate the effects of death reflection on existential well-being and the mediating role of relational self-esteem.675 university students from Sichuan and Hubei,China,completed the death reflection scale,relational self-esteem scale,and the existential well-being subscale of the spiritual well-being scale.Results indicated that death reflection was positively correlated with both relational self-esteem and existential well-being,and relational self-esteem was positively related to existential well-being.Mediation analysis confirmed that relational self-esteem mediated the relationship between death reflection and existential well-being.This study not only enriches the research content on the positive effects of death reflection theoretically,but also holds significant practical value in guiding individuals who have experienced death or been exposed to death-related information in their psychological reconstruction and recovery.展开更多
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif...Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.展开更多
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fracture...In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fractures in elderly pati-ents,entails more complex processes and higher rates of operative complications than primary arthroplasty.Hence,it is important to consider the appropriateness of the primary treatment choice,as well as the adequacy of nailing fixation for intertrochanteric fractures.This article briefly analyzes the possible factors contributing to the nailing failure of intertrochanteric fractures and attempts to find corresponding countermeasures to prevent fixation failures.It also analyzes the choice of treatment between nailing fixation and primary arthroplasty for intertrochanteric fractures.展开更多
Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper ...Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.展开更多
The field of terahertz devices is important in terahertz technology.However,most of the current devices have limited functionality and poor performance.To improve device performance and achieve multifunctionality,we d...The field of terahertz devices is important in terahertz technology.However,most of the current devices have limited functionality and poor performance.To improve device performance and achieve multifunctionality,we designed a terahertz device based on a combination of VO_(2)and metamaterials.This device can be tuned using the phase-transition characteristics of VO_(2),which is included in the triple-layer structure of the device,along with SiO_(2)and Au.The terahertz device exhibits various advantageous features,including broadband coverage,high absorption capability,dynamic tunability,simple structural design,polarization insensitivity,and incidentangle insensitivity.The simulation results showed that by controlling the temperature,the terahertz device achieved a thermal modulation range of spectral absorption from 0 to 0.99.At 313 K,the device exhibited complete reflection of terahertz waves.As the temperature increased,the absorption rate also increased.When the temperature reached 353 K,the device absorption rate exceeded 97.7%in the range of 5-8.55 THz.This study used the effective medium theory to elucidate the correlation between conductivity and temperature during the phase transition of VO_(2).Simultaneously,the variation in device performance was further elucidated by analyzing and depicting the intensity distribution of the electric field on the device surface at different temperatures.Furthermore,the impact of various structural parameters on device performance was examined,offering valuable insights and suggestions for selecting suitable parameter values in real-world applications.These characteristics render the device highly promising for applications in stealth technology,energy harvesting,modulation,and other related fields,thus showcasing its significant potential.展开更多
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a...Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.展开更多
Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch ...Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.展开更多
Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dime...Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dimensional numerical simulation based on the Euler multiphase flow framework is used to investigate the reflection behavior of the insensitive explosive detonation propagating around a cylinder.The results show that there is a critical incident angle,defined as transition angle for detonation propagating around the cylinder,below which the regular reflection(RR)on the cylinder surface is observed.When the incident angle is greater than the transition angle,RR changes to Mach reflection.This transition angle is larger than that obtained by polar curve theory and the change of incident angle is used to interpret above phenomenon.In addition,the influence of cylindrical radius and detonation reaction zone width on the reflection behavior is examined.As the cylindrical radius increases,the height of Mach stem increases while the transition angle decreases and gradually approaches the value in pole curve theory.Von Neumann reflection is observed when the reaction zone width is relatively small.This is because the energy release rate in the reaction zone is high for small reaction zone width,resulting in the formation of a series of compression waves near the cylindrical interface.展开更多
In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considere...In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considered.The main objective is an understanding of the effect of the current and various geometrical parameters on the reflection coefficient.The wave used in the study is based on potential theory,and the submerged structures consist of two rectangular breakwaters positioned at a fixed distance from each other and attached to the bottom of a wave flume.The numerical modeling approach employed in this work relies on the Boundary Element Method(BEM).The results are compared with experimental data to validate the approach.The findings of the study demonstrate that the double rectangular breakwater configuration exhibits superior wave attenuation abilities if compared to a single rectangular breakwater,particularly at low wavenumbers.Furthermore,the study reveals that wave mitigation is more pronounced when the current and wave propagation are coplanar,whereas it is less effective in the case of opposing current.展开更多
The total internal reflection(TIR)behavior of interface shear waves is crucial for ensuring the reliability of dielectric elastomer(DE)devices.However,due to the complex force-electric coupling and large deformation o...The total internal reflection(TIR)behavior of interface shear waves is crucial for ensuring the reliability of dielectric elastomer(DE)devices.However,due to the complex force-electric coupling and large deformation of DEs,the TIR behavior of shear waves in heterogeneous force-electric interface models is still unclear.This study modeled an elastic/DE bi-material interface to analyze the trajectory of out-of-plane shear waves.Employing Dorfmann and Ogden’s nonlinear electroelastic framework and the related linear small incremental motion theory,a method has been developed to control the TIR behavior of interface shear waves.It has been found that the TIR behavior is significantly influenced by the strain-stiffening effect induced by biasing fields.Consequently,a biasing field principle involving preset electric displacement and pre-stretch has been proposed for TIR occurrence.By controlling the pre-stretch and preset electric displacement,active regulation of TIR behavior can be achieved.These results suggest a potential method for achieving autonomous energy shielding to improve the reliability of DE devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12274313,62275184,and 62411540033)Collaborative Innovation Center of Suzhou Nano Science and Technology,Suzhou Basic Research Project(Grant No.SJC2023003)+1 种基金the Gusu Leading Talent Plan for Scientific and Technological Innovation and Entrepreneurship(Grant No.ZXL2024400)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites.
基金Project supported by the National Natural Science Foundation of China(Grant No.61875148)the Key Awards Program of Cultivating Outstanding Innovative Postgraduates in Arts and Sciences of Tianjin University(Grant No.C1-2022002)+3 种基金the Talent Project of Anhui Science and Technology University(Grant No.DQYJ202304)the University-Level Research Project of Tianjin Sino-German University of Applied Sciences(Grant No.zdkt2018-007)China Association for Science and Technology Young Talent Support Project Doctoral Special Programthe National High-level University Scholarship Program for Graduate Students of China Scholarship Council(Grant No.202406250166)。
文摘We report an interesting and abnormal electromagnetic phenomenon with regard to a terajet(TJ)that is generated in a reflection mode,which is realized by placing a dielectric scatterer onto a metal reflection plate.We show that the introduction of an air hollow into metal reflection plate beneath the scatterer does not induce an expected decrease but an abnormal increase of focal length of the TJ by as much as more than three times.This abnormal phenomenon takes place in case that the air hollow is shallow and there exists a critical hollow depth for a given lateral size of air hollow.Larger than the critical depth,the phenomenon no longer occurs.It is explained from viewpoints of both ray optics in terms of role of relative portion of central waves in TJ formation and electromagnetic field theory with regard to hollow-induced phase singularities.
基金Sponsored by Teaching Research Project of Yangtze University(JY2023028).
文摘Curriculum ideological and political education is an important direction of higher education reform in the new era,aiming to realize the organic integration of professional knowledge imparting and ideological and political education.Taking preliminary landscape design course as an example,this paper expounded in detail the implementation of teaching reform from three aspects:the formulation of teaching objectives,the integration of teaching contents and the innovation of teaching methods.This paper systematically summarized the implementation effect of ideological and political education reform,and reflected on the excavation of ideological and political elements,integration degree,innovation of teaching methods,teachers’ideological and political ability and practical teaching.The exploration on curriculum ideological and political teaching provides useful reference and thinking for similar courses,and promotes the sustainable development of curriculum ideological and political education.
基金supported by the National Natural Science Foundation of China(Grant Nos.52201322,52401323,and52222109)the Fundamental Research Funds for the Central Universities(Grant No.2024ZYGXZR042)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022B1515020036 and 2023A1515012144)the Project of State Key Laboratory of Subtropical Building and Urban Science(Grant No.2023ZB14)。
文摘The power generation performance of a heaving body wave energy converter(HBWEC)can be enhanced through strategic deployment in proximity to natural or artificial coastal structures.In this study,coastal structures are represented by a partial reflection wall,enabling the device to harness additional reflected wave energy.However,the mechanisms by which the reflection coefficient and the clearance between the wall and the device affect energy conversion performance remain inadequately understood.This study experimentally investigates these effects.The findings demonstrate that the clearance impact on HBWEC power performance near partial reflection walls aligns with standing wave variation characteristics,with optimal positioning near the second antinode of the HBWEC's heaving natural period.Enhanced reflection coefficients improve energy conversion efficiency within the wave spectrum around the device's heaving natural period.Additionally,significant water sloshing observed within the clearance may diminish power performance,as verified through computational fluid dynamics(CFD)analysis.This phenomenon results from the multiplicative relationship of leeside clearance with 0.5λ(λis the wavelength).These insights suggest that practical engineering implementation requires balanced consideration of reflection coefficient,clearance,sloshing phenomenon,and heaving restriction system,rather than individual parameter optimization.
文摘Global challenges like epidemics,wars,and climate change expose humans to life-and-death threats daily,triggering death anxiety and subsequent death reflection,which involves deliberate cognitive processing of mortality.While some studies have shown the positive impacts of death reflection,such as on well-being,the relationship between death reflection and existential well-being,closely related to life and death,remains unexplored.This study aimed to investigate the effects of death reflection on existential well-being and the mediating role of relational self-esteem.675 university students from Sichuan and Hubei,China,completed the death reflection scale,relational self-esteem scale,and the existential well-being subscale of the spiritual well-being scale.Results indicated that death reflection was positively correlated with both relational self-esteem and existential well-being,and relational self-esteem was positively related to existential well-being.Mediation analysis confirmed that relational self-esteem mediated the relationship between death reflection and existential well-being.This study not only enriches the research content on the positive effects of death reflection theoretically,but also holds significant practical value in guiding individuals who have experienced death or been exposed to death-related information in their psychological reconstruction and recovery.
基金supported by the Natural Science Foundation of Anhui Province(No.2308085QE146 and 2208085ME116)the National Natural Science Foundation of China(No.52173039)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210894)the Anhui Provincial Universities Outstanding Youth Research Project(No.2023AH020018).
文摘Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
文摘In this editorial,I present my comments on the article by Solarino et al.Conversion hip arthroplasty,which is an optional salvage procedure performed following unsuccessful fixation of intertrochanteric femur fractures in elderly pati-ents,entails more complex processes and higher rates of operative complications than primary arthroplasty.Hence,it is important to consider the appropriateness of the primary treatment choice,as well as the adequacy of nailing fixation for intertrochanteric fractures.This article briefly analyzes the possible factors contributing to the nailing failure of intertrochanteric fractures and attempts to find corresponding countermeasures to prevent fixation failures.It also analyzes the choice of treatment between nailing fixation and primary arthroplasty for intertrochanteric fractures.
基金supported by the TRANSIT project(funded by EU Horizon 2020 and the Europe’s Rail Joint Undertaking under Grant Agreement 881771).
文摘Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.
基金support from the National Natural Science Foundation of China(Nos.51606158,11604311,and 12074151)Sichuan Science and Technology Program(No.2021JDRC0022)+3 种基金Natural Science Foundation of Fujian Province(No.2021J05202)Research Project of Fashu Foundation(No.MFK23006)Open Fund of the Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education in Wuhan University of Science and Technology(No.MECOF2022B01)the project supported by Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(No.DH202321).
文摘The field of terahertz devices is important in terahertz technology.However,most of the current devices have limited functionality and poor performance.To improve device performance and achieve multifunctionality,we designed a terahertz device based on a combination of VO_(2)and metamaterials.This device can be tuned using the phase-transition characteristics of VO_(2),which is included in the triple-layer structure of the device,along with SiO_(2)and Au.The terahertz device exhibits various advantageous features,including broadband coverage,high absorption capability,dynamic tunability,simple structural design,polarization insensitivity,and incidentangle insensitivity.The simulation results showed that by controlling the temperature,the terahertz device achieved a thermal modulation range of spectral absorption from 0 to 0.99.At 313 K,the device exhibited complete reflection of terahertz waves.As the temperature increased,the absorption rate also increased.When the temperature reached 353 K,the device absorption rate exceeded 97.7%in the range of 5-8.55 THz.This study used the effective medium theory to elucidate the correlation between conductivity and temperature during the phase transition of VO_(2).Simultaneously,the variation in device performance was further elucidated by analyzing and depicting the intensity distribution of the electric field on the device surface at different temperatures.Furthermore,the impact of various structural parameters on device performance was examined,offering valuable insights and suggestions for selecting suitable parameter values in real-world applications.These characteristics render the device highly promising for applications in stealth technology,energy harvesting,modulation,and other related fields,thus showcasing its significant potential.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0204001,2018YFA0209103,2016YFB0400101,and 2016YFB0402303)the National Natural Science Foundation of China(Grant Nos.61627822,61704121,61991430,and 62074036)Postdoctoral Research Program of Jiangsu Province(Grant No.2021K599C).
文摘Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.
基金the National Natural Science Foun-dation of China(Grant Nos.12034018 and 11625419).
文摘Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
文摘Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dimensional numerical simulation based on the Euler multiphase flow framework is used to investigate the reflection behavior of the insensitive explosive detonation propagating around a cylinder.The results show that there is a critical incident angle,defined as transition angle for detonation propagating around the cylinder,below which the regular reflection(RR)on the cylinder surface is observed.When the incident angle is greater than the transition angle,RR changes to Mach reflection.This transition angle is larger than that obtained by polar curve theory and the change of incident angle is used to interpret above phenomenon.In addition,the influence of cylindrical radius and detonation reaction zone width on the reflection behavior is examined.As the cylindrical radius increases,the height of Mach stem increases while the transition angle decreases and gradually approaches the value in pole curve theory.Von Neumann reflection is observed when the reaction zone width is relatively small.This is because the energy release rate in the reaction zone is high for small reaction zone width,resulting in the formation of a series of compression waves near the cylindrical interface.
文摘In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considered.The main objective is an understanding of the effect of the current and various geometrical parameters on the reflection coefficient.The wave used in the study is based on potential theory,and the submerged structures consist of two rectangular breakwaters positioned at a fixed distance from each other and attached to the bottom of a wave flume.The numerical modeling approach employed in this work relies on the Boundary Element Method(BEM).The results are compared with experimental data to validate the approach.The findings of the study demonstrate that the double rectangular breakwater configuration exhibits superior wave attenuation abilities if compared to a single rectangular breakwater,particularly at low wavenumbers.Furthermore,the study reveals that wave mitigation is more pronounced when the current and wave propagation are coplanar,whereas it is less effective in the case of opposing current.
基金supported by the National Natural Science Foundation of China(Grant No.12372154)National Science and Technology Major Project(Grant No.J2019-III-0010-0054).
文摘The total internal reflection(TIR)behavior of interface shear waves is crucial for ensuring the reliability of dielectric elastomer(DE)devices.However,due to the complex force-electric coupling and large deformation of DEs,the TIR behavior of shear waves in heterogeneous force-electric interface models is still unclear.This study modeled an elastic/DE bi-material interface to analyze the trajectory of out-of-plane shear waves.Employing Dorfmann and Ogden’s nonlinear electroelastic framework and the related linear small incremental motion theory,a method has been developed to control the TIR behavior of interface shear waves.It has been found that the TIR behavior is significantly influenced by the strain-stiffening effect induced by biasing fields.Consequently,a biasing field principle involving preset electric displacement and pre-stretch has been proposed for TIR occurrence.By controlling the pre-stretch and preset electric displacement,active regulation of TIR behavior can be achieved.These results suggest a potential method for achieving autonomous energy shielding to improve the reliability of DE devices.