期刊文献+
共找到467篇文章
< 1 2 24 >
每页显示 20 50 100
Al_(3)Sc phase uniform distribution and aluminum grains refinement in Al-2Sc alloy achieved by NdFeB permanent magnet stirring
1
作者 Jianfei Peng Wanlin Wang +4 位作者 Jie Zeng Shuaijie Yuan Ligang Liu Junyu Ji Shengxi Wu 《Journal of Rare Earths》 2025年第7期1535-1547,共13页
The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification pro... The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification process of the Al—2Sc alloy controlled by a novel PMS using NdFeB permanent magnets under various rotation speeds(0,50,100 and 150 r/min).The simulated results reveal that the maximum electromagnetic force increases proportionally from 4.14 to 12.39 kN/m^(3)and the maximum tangential velocity increases from 0.13 to 0.36 m/s when the rotation speed of PMS enhances from 50 to 150 r/min in the ingot melt.Besides,the experimental results demonstrate that PMS can achieve a uniform distribution of blocky Al_(3)Sc precipitated phase in the longitudinal direction under the impact of a forced fluid flow.Moreover,increasing rotation speed of PMS is beneficial to refining aluminum grain size significantly and decreasing the texture intensity in the alloy.In addition,the Brinell hardness of Al-2Sc alloy is increased by 33%to 27.8 HB and the tensile strength is enhanced by 34%-128.2 MPa,due to the improved distribution of the strengthening Al_(3)SC phase and the grain refinement of Al matrix under the impact of PMS.This work provides an effective application of NdFeB permanent magnets in the metal cast field. 展开更多
关键词 Al-2Sc alloy Permanent magnet stirring Al_(3)Sc phase Grain refinement Mechanical properties Rare earths
原文传递
Insights into the microstructural design of high-performance Ti alloys for laser powder bed fusion by tailoring columnar prior-βgrains andα-Ti morphology
2
作者 S.X.Wang S.F.Li +4 位作者 X.M.Gan R.D.K.Misra R.Zheng K.Kondoh Y.F.Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第20期156-168,共13页
A high-performance Ti-Ni-B alloy with good tensile properties and reduced mechanical anisotropy was developed by promoting the columnar to equiaxed transition(CET)of prior-βgrains and modifyingα-laths to equiaxed gr... A high-performance Ti-Ni-B alloy with good tensile properties and reduced mechanical anisotropy was developed by promoting the columnar to equiaxed transition(CET)of prior-βgrains and modifyingα-laths to equiaxed grains.Both Ni and B contributed to the refinement of columnar prior-βgrains during the L→βphase transformation by generating constitutional undercooling.Compared with Ni,B had a su-perior capability of generating constitutional undercooling,which not only replaced a significant amount of Ni with a minor addition to reduce the formation of brittle eutectoid,but also reacted with Ti to form TiB to promote heterogeneous nucleation ofα-Ti grains during theβ→αphase transformation.Together with the restricted growth ofα-laths induced by the refinement of prior-βgrains,a fully equiaxedα-Ti structure was obtained.The competition between the negative effect of brittle eutectoid and the positive role ofα-lath to equiaxed grain transition on the ductility of as-printed Ti-Ni-B alloys was fundamen-tally governed by the morphology of eutectoid and technically dependent on the Ni-B content.When the addition was 1.2Ni-0.06B(wt.%)or less,the positive effect ofα-lath on equiaxed grain transition can effectively mitigate the issue of reduced ductility caused by brittle eutectoid.In contrast,at 1.8Ni-0.09B or greater,the negative effect of eutectoid dominated.New insights into microstructural design obtained through the aforementioned approach were presented and discussed. 展开更多
关键词 Laser powder bed fusion Titanium alloys Grain refinement Powder processing Anisotropy
原文传递
Mechanistic insights into cluster strengthening and grain refinement toughening in fully oxidized AgMgNi alloys 被引量:1
3
作者 Haicheng Zhu Bingrui Liu +9 位作者 Shaohong Liu Limin Zhou Hao Cui Manmen Liu Li Chen Ming Wen Haigang Dong Feng Liu Song Li Liang Zuo 《Journal of Materials Science & Technology》 2025年第20期252-263,共12页
The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxi... The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxidized AgMgNi alloys,which were internally oxidized at 800℃ for 8 h under an oxy-gen atmosphere.We found that Mg-O clusters contributed to the hardening(138 HV)and strengthening(376.9 MPa)of the AgMg alloy through solid solution strengthening effects,albeit at the expense of duc-tility.To address this limitation,we introduced Ni nanoparticles into the AgMg alloy,resulting in signifi-cant grain refinement within its microstructure.Specifically,the grain size decreased from 67.2μm in the oxidized AgMg alloy to below 6.0μm in the oxidized AgMgNi alloy containing 0.3 wt%Ni.Consequently,the toughness increased significantly,rising from toughness value of 2177.9 MJ m^(-3) in the oxidized AgMg alloy to 6186.1 MJ m^(-3) in the oxidized AgMgNi alloy,representing a remarkable 2.8-fold enhancement.Furthermore,the internally oxidized AgMgNi alloy attained a strength of up to 387.6 MPa,comparable to that of the internally oxidized AgMg alloy,thereby demonstrating the successful realization of concurrent strengthening and toughening.These results collectively offer a novel approach for the design of high-performance alloys through the synergistic combination of cluster strengthening and grain refinement toughening. 展开更多
关键词 Ag-based alloys Mg-O cluster Grain refining Internal oxidation HARDENING
原文传递
Effects of grain size on the corrosion inhibition and adsorption performance of benzotriazole on carbon steel in NaCl solution 被引量:1
4
作者 Panjun Wang Jinke Wang +8 位作者 Yao Huang Xuequn Cheng Zhiwei Zhao Lingwei Ma Shun Wang Ruijie Han Zichang Zhang Dawei Zhang Xiaogang Li 《Journal of Materials Science & Technology》 2025年第14期221-236,共16页
This study investigates the adsorption mechanism,the film formation process,and the inhibition performance of benzotriazole(BTAH)on carbon steels with different grain sizes(i.e.,24.5,4.3,and 0.6μm)in 3.5 wt.%NaCl sol... This study investigates the adsorption mechanism,the film formation process,and the inhibition performance of benzotriazole(BTAH)on carbon steels with different grain sizes(i.e.,24.5,4.3,and 0.6μm)in 3.5 wt.%NaCl solution.The results demonstrate that grain refinement significantly impacts the adsorption and inhibition performance of BTAH on carbon steels.Ultra-refinement of steel grains to 0.6μm improves the maximum inhibition efficiency of BTAH to 90.0%within 168 h of immersion,which was much higher than that of the steels with 24.5μm(73.6%)and 4.3μm grain sizes(81.7%).Notably,grain sizes of 4.3 and 0.6μm facilitate a combination of physisorption and chemisorption of BTAH after 120 h of immersion,as evidenced by the X-ray photoelectron spectroscopy(XPS)results and Langmuir adsorption isotherms,while BTAH adsorbed on carbon steels with a grain size of 24.5μm through physisorption during the 168 h of immersion.Ultra-refinement of grains has beneficial impacts on promoting the formation of a stable and dense corrosion inhibitor film,leading to improved corrosion resistance and the mitigation of non-uniform corrosion.These advantageous effects can be attributed to the higher adsorption energy at grain boundaries(approximately-3.12 eV)compared to grain interiors(ranging from-0.79 to 2.47 eV),promoting both the physisorption and chemisorption of organic corrosion inhibitors.The investigation comprehensively illustrates,for the first time,the effects of grain size on the adsorption mechanism,film formation process,and inhibition performance of organic corrosion inhibitors on carbon steels.This study demonstrates a promising approach to enhancing corrosion inhibition performance through microstructural design. 展开更多
关键词 Carbon steel Corrosion inhibitor Grain refinement MICROSTRUCTURE Adsorption mechanism
原文传递
Exceptional grain refinement induced by dispersed MgO particles in TIG-welded AZ31 alloy 被引量:1
5
作者 Le Zai Xin Tong +2 位作者 Yun Wang Hao Zhang Xiaohuai Xue 《Journal of Materials Science & Technology》 2025年第2期1-13,共13页
Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can res... Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components. 展开更多
关键词 AZ31 alloy TIG welding Columnar-to-equiaxed transition Grain refinement Heterogeneous nucleation
原文传递
Simultaneous improvement of strength and ductility in a P-doped CrCoNi medium-entropy alloy 被引量:1
6
作者 Hangzhou Zhang Guoqiang Sun +2 位作者 Muxin Yang Fuping Yuan Xiaolei Wu 《Journal of Materials Science & Technology》 2025年第6期128-138,共11页
A newly developed P-doped CrCoNi medium-entropy alloy(MEA)provides both higher yield strength and larger uniform elongation than the conventional CrCoNi MEA,even superior tensile ductility to the other-element-doped C... A newly developed P-doped CrCoNi medium-entropy alloy(MEA)provides both higher yield strength and larger uniform elongation than the conventional CrCoNi MEA,even superior tensile ductility to the other-element-doped CrCoNi MEAs at similar yield strength levels.P segregation at grain boundaries(GBs)and dissolution inside grain interiors,together with the related lower stacking fault energy(SFE)are found in the P-doped CrCoNi MEA.Higher hetero-deformation-induced(HDI)hardening rate is observed in the P-doped CrCoNi MEA due to the grain-to-grain plastic deformation and the dynamic structural refinement by high-density stacking fault-walls(SFWs).The enhanced yield strength in the P-doped CoCrNi MEA can be attributed to the strong substitutional solid-solution strengthening by severer lattice distortion and the GB strengthening by phosphorus segregation at GBs.During the tensile deformation,the multiple SFW frames inundated with massive multi-orientational tiny planar stacking faults(SFs)between them,rather than deformation twins,are observed to induce dynamic structural refinement for forming par-allelepiped domains in the P-doped CoCrNi MEA,due to the lower SFE and even lower atomically-local SFE.These nano-sized domains with domain boundary spacing at tens of nanometers can block disloca-tion movement for strengthening on one hand,and can accumulate defects in the interiors of domains for exceptionally high hardening rate on the other hand. 展开更多
关键词 Tensile ductility Dynamic grain refinement Stacking fault energy Strain hardening Phosphorus segregation
原文传递
A novel fine-grained TiZrCu alloy tailored for marine environment with high microbial corrosion-resistance 被引量:1
7
作者 Jiaqi Li Xi Ouyang +8 位作者 Diaofeng Li Hang Yu Yaozong Mao Qing Jia Zhiqiang Zhang Mingxing Zhang Chunguang Bai Fuhui Wang Dake Xu 《Journal of Materials Science & Technology》 2025年第19期315-330,共16页
Titanium alloys,usually known as non-corrodible material,are susceptible to microbiologically influenced corrosion(MIC)in marine environment.While titanium-zirconium(TiZr)alloys have been extensively studied in medica... Titanium alloys,usually known as non-corrodible material,are susceptible to microbiologically influenced corrosion(MIC)in marine environment.While titanium-zirconium(TiZr)alloys have been extensively studied in medical applications,the influence of microorganisms,especially marine microorganisms,on their corrosion behavior has not been explored.In this work,a TiZrCu alloy with a combination of excel-lent mechanical,anti-corrosion,and antibacterial properties was developed by optimizing the Cu content and grain refinement.Its MIC and antibacterial mechanisms against Pseudomonas aeruginosa,a represen-tative marine microorganism,were systematically investigated.5.5 wt%was determined as the optimal copper content.The fine-grained Ti-15Zr-5.5Cu(TZC-5.5FG)alloy maintained high MIC resistance,exhibit-ing a corrosion current of 5.7±0.1 nA/cm^(2) and an antibacterial rate of 91.8% against P.aeruginosa.The mechanism of improved corrosion resistance was attributed to the denser passive film with high TiO2 content and the lower surface potential differenceΔE.The release of Cu^(2+)ions,ΔE,and the generation of ROS are three major factors that contribute to the antibacterial performance of TiZrCu alloys.Com-pared to other available marine metals,TZC-5.5FG alloy exhibited superior comprehensive performance,including excellent mechanical properties and anti-MIC capacity,which make it a promising material for load-bearing applications in marine environment. 展开更多
关键词 Multifunctional titanium-zirconium alloys Grain refinement Microbiologically influenced corrosion resistance Antibacterial mechanism Mechanical property
原文传递
Synchronous enhancement of corrosion resistance and mechanical properties of Mg-Zn-Ca alloys by grain refinement using equal channel angular pressing 被引量:1
8
作者 Yi-zhuo WANG Xiao-ping LUO +6 位作者 Gang-xiao REN Hong-xia WANG Li-fei WANG Wei-li CHENG Hang LI Xiao-peng LU Kwang-seon SHIN 《Transactions of Nonferrous Metals Society of China》 2025年第6期1772-1786,共15页
To investigate the effect of microstructure evolution on corrosion behavior and strengthening mechanism of Mg-1Zn-1Ca(wt.%)alloys,as-cast Mg-1Zn-1Ca alloys were performed by equal channel angular pressing(ECAP)with 1 ... To investigate the effect of microstructure evolution on corrosion behavior and strengthening mechanism of Mg-1Zn-1Ca(wt.%)alloys,as-cast Mg-1Zn-1Ca alloys were performed by equal channel angular pressing(ECAP)with 1 and 4 passes.The corrosion behavior and mechanical properties of alloys were investigated by optical microscopy(OM),scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),electrochemical tests,immersion tests and tensile tests.The results showed that mechanical properties improved after ECAP 1 pass;however,the corrosion resistance deteriorated due to high-density dislocations and fragmented secondary phases by ECAP.In contrast,synchronous improvement in the mechanical properties and corrosion resistance was achieved though grain refinement after ECAP 4 passes;fine grains led to a significant improvement in the yield strength,ultimate tensile strength,elongation,and corrosion rate of 103 MPa,223 MPa,30.5%,and 1.5843 mm/a,respectively.The enhanced corrosion resistance was attributed to the formation of dense corrosion product films by finer grains and the barrier effect by high-density grain boundaries.These results indicated that Mg-1Zn-1Ca alloy has a promising potential for application in biomedical materials. 展开更多
关键词 Mg−1Zn−1Ca alloy equal channel angular pressing grain refinement corrosion behavior mechanical properties
在线阅读 下载PDF
Effect of Grain Refinement on Grain Boundary Diffusion Process and Magnetic Properties of Sintered NdFeB Magnets
9
作者 Wang Mei Liu Weiming +8 位作者 Peng Buzhuang Wang Qian Wang Fei Zhang Yumeng Gu Xiaoqian Wang Qi Xiao Guiyong Liu Yan Zhu Xinde 《稀有金属材料与工程》 北大核心 2025年第11期2768-2776,共9页
Three types of NdFeB magnets with the same composition and different grain sizes were prepared,and then the grain boundary diffusion was conducted using metal Tb under the same technical parameters.The effect of grain... Three types of NdFeB magnets with the same composition and different grain sizes were prepared,and then the grain boundary diffusion was conducted using metal Tb under the same technical parameters.The effect of grain size on the grain boundary diffusion process and properties of sintered NdFeB magnets was investigated.The diffusion process was assessed using X-ray diffractometer,field emission scanning electron microscope,and electron probe microanalyzer.The magnetic properties of the magnet before and after diffusion were investigated.The results show that the grain refinement of the magnet leads to higher Tb utilization efficiency and results in higher coercivity at different temperatures.It can be attributed to the formation of a deeper and more complete core-shell structure,resulting in better magnetic isolation and higher anisotropy of the Nd_(2)Fe_(14)B grains.This work may shed light on developing high coercivity with low heavy rare earth elements through grain refinement. 展开更多
关键词 sintered NdFeB magnets grain refinement grain boundary diffusion COERCIVITY
原文传递
Recrystallization aspects and factors affecting their roles in Mg alloys:A comprehensive review
10
作者 S.S.A.Shah Manping Liu +6 位作者 Azim Khan Farooq Ahmad Umer Masood Chaudry Muhammad Yar Khan M.R.Abdullah Shiwei Xu Zhen Peng 《Journal of Magnesium and Alloys》 2025年第5期1879-1914,共36页
Recrystallization stands as an essential process that influences the microstructure and properties of magnesium(Mg)alloys,yet its mechanisms remain complex and multifaceted.This review explores the key factors affecti... Recrystallization stands as an essential process that influences the microstructure and properties of magnesium(Mg)alloys,yet its mechanisms remain complex and multifaceted.This review explores the key factors affecting the recrystallization behavior of Mg alloys,emphasizing how their unique structural characteristics impact the driving forces and dynamics of recrystallization.Unlike conventional alloys,Mg alloys exhibit distinctive recrystallization kinetics,which is significantly affected by deformation conditions,such as strain rate,temperature,and processing methods(e.g.,rolling,forging,and extrusion).The process is also influenced by material characteristics,including initial grain size,texture,dislocation density,solute clustering,and stacking fault energy.Additionally,uneven strain distribution,stress concentrations,and stored energy play crucial roles in shaping the formation of recrystallized grains,particularly near grain boundaries.Notably,recrystallization is driven by dislocation accumulation and the availability of slip systems,with new strain-free grains typically forming in regions of high dislocation density.This paper synthesizes the existing literature to provide a comprehensive understanding of the mechanisms and kinetics of recrystallization in Mg alloys,highlighting the influence of microstructural features such as second-phase particles and grain boundary characteristics.It also identifies key challenges and suggests promising directions for future research,including optimizing material compositions and the interaction between deformation conditions via machine learning. 展开更多
关键词 Mg alloys RECRYSTALLIZATION Microstructural evolution Influencing factors Grain refinement TWINNING
在线阅读 下载PDF
A novel strategy for developing fine-grained FeCrAl alloys with high strength and ductility
11
作者 Shuaiyang Liu Jinyu Zhang +3 位作者 Hui Wang Conghui Zhang Gang Liu Jun Sun 《Journal of Materials Science & Technology》 2025年第23期258-269,共12页
Grain boundary hardening is an important mechanism for improving the strength and ductility of metal materials.However,the industrial fabrication of fine-grained FeCrAl alloys was limited by the interaction between th... Grain boundary hardening is an important mechanism for improving the strength and ductility of metal materials.However,the industrial fabrication of fine-grained FeCrAl alloys was limited by the interaction between the recrystallization and precipitation.Here,we report the facile mass production of fine-grained FeCrAl alloys by Si alloying and manipulation of the recrystallization process through introducing heterogeneous Si-rich Laves precipitates.The pre-precipitation of heterogeneous Laves phase not only promotes subsequent recrystallization grain nucleation by the PSN(Particles simultaneous nucleation)and SIBM(Strain-induced grain boundary migration)mechanisms,but also provides resistance to grain growth by the Zener pinning mechanism.Moreover,continuous grain refinement can be achieved by intensifying the heterogeneous Laves precipitates through decreasing their formation energy.This approach enables the preparation of a fully recrystallized fine-grain structure with a grain size of 4.6μm without the introduction of segregated boundaries.Consequently,an unprecedented synergy enhancement of strength(σ_(y)=625 MPa,σ_(uts)=867 MPa,)and ductility(ε_(u)=13.8%)is achieved in the fine-grain structured FeCrAl alloys compared with the coarse grain counterpart.The experimental results prove that the proposed strategy is appropriate for developing high strength and ductility FeCrAl alloys,and further boosting its potential applications as accident-tolerant-fuel cladding in nuclear reactors.In addition,this grainrefinement strategy should be extendable to other alloy systems,where there is a significant difference between precipitation and recrystallization temperatures. 展开更多
关键词 FeCrAl alloys Strength DUCTILITY Heterogeneous precipitate Grain refinement
原文传递
Fine-grained titanium mediates the biointerfacial and bioenergetic remodeling of macrophage for optimized osseointegration
12
作者 Yingjing Fang Hao Gu +6 位作者 Wenyue Yang Yintao Zhang Changgong Lan Binghao Wang Min Ruan Liqiang Wang Yuanfei Fu 《Journal of Materials Science & Technology》 2025年第5期292-306,共15页
The remodeling of macrophages mediated by biomaterials is an important step in osseointegration.The biointerfacial characteristics shaped by implants and the bioenergetic state derived from macrophages are considered ... The remodeling of macrophages mediated by biomaterials is an important step in osseointegration.The biointerfacial characteristics shaped by implants and the bioenergetic state derived from macrophages are considered the key to macrophage reprogramming.In this study,the integrated Ti/Zn composites with optimized morphology and bioactive phase were prepared by friction stir processing,which could meet the multi-biofunctional requirements in the application of narrow-diameter implants.The severe plastic deformation and the hindrance of Zn particles to grain growth promote grain refinement,resulting in enhanced mechanical properties.The cell interfacial adhesion mediated by the grain boundary collaborated the energy metabolism reprogramming induced by the released Zn ion,promoting jointly anti-inflammatory cascade in macrophages and favorable osteogenesis in bone marrow mesenchymal stem cells(BMSCs).This study provides a new simultaneous approach of morphology and composition modification for titanium implants,and reveals the important role of grain size and bioactive element in the reversion of macrophage fate as well. 展开更多
关键词 Grain refinement ZINC IMMUNOMODULATION OSSEOINTEGRATION
原文传递
800 MPa Fe–Mn alloy with expected damping capacity by coupling grain refinement and ε-martensite introduction
13
作者 Xiao-guang Xie Jun Chen Guang-ming Cao 《Journal of Iron and Steel Research International》 2025年第8期2504-2511,共8页
The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε... The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε-martensite introduction.The yield strength can be greatly raised to around 700 MPa by refining grain size from 88.4 to 1.8μm.Although there exist numerous stacking faults in the fine-grained alloy,the damping capacity is strongly deteriorated due to the suppression of thermally activated ε-martensite.We demonstrate that the stacking faults cannot provide effective contribution to damping capacity and hence introduce a considerable volume fraction of stress/strain-induced ε-martensite to raise damping sources,including ε-martensite and γ/ε interfaces,etc.,by a small pre-strain.From this,the damping capacity can be improved,and the yield strength can be further enhanced from nearly 700 MPa to around 800 MPa.Thus,the combination of high yield strength and good damping capacity is realized. 展开更多
关键词 Fe-Mn alloy ε-martensite Grain refinement Strength Damping capacity
原文传递
A promising approach to enhance fatigue life of TC11 titanium alloy:Low dislocation density and surface grain refinement induced by electropulsing
14
作者 Xiuwen Ren Zhongjin Wang Ruidong An 《Journal of Materials Science & Technology》 2025年第1期60-70,共11页
The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused ... The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused by strengthening,the strengthening energy is limited and the ideal strengthening effect cannot be obtained.This work aims to propose a novel approach to address this issue effectively.The surface layer with high-density dislocations was obtained by a low-energy surface strengthening method(shot peening)at first.Then the surface strengthening mechanism changes from dislocation strengthen-ing to grain boundary strengthening after electropulsing treatment(EPT).The evolution of residual stress and microstructure was analyzed using multi-scale characterization techniques.The results demonstrate that EPT followed by surface strengthening makes a remarkable 304%increase in fatigue life of TC11 titanium alloy.The enhancement of fatigue life can be attributed to the grain refinement accompanied by the formation of nanotwins and sub-grains in the surface-strengthened layer,as well as the reduction in dislocation density within the substrate after EPT.This study demonstrates the significant potential of EPT in further enhancing the fatigue life of surface pre-strengthened thin-walled components. 展开更多
关键词 Titanium alloy ELECTROPULSING Surface strengthening Fatigue performance Dislocation density Surface grain refinement
原文传递
Microstructural Evolution of Rapidly Solidified Ni-Cu Alloys
15
作者 QU Shuwei LI Zejun +4 位作者 WANG Hongfu TIAN Xiaoguang QIAN Zhike LI Ruiqin YAO Wei 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1759-1765,共7页
This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined wi... This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined with optical microscopy and electron backscatter diffraction(EBSD)analysis demonstrate that increasing undercooling(ΔT)can induce a consistent sequence of microstructural transitions:coarse dendrites,fine equiaxed grains(first refinement),oriented fine dendrites,and fine equiaxed grains(second refinement).Two distinct grain refinement events are identified,with critical undercooling thresholds(ΔT)dependent on composition:increasing Cu content increases the critical undercoolingΔT*required for the second refinement(Cu55Ni45:227 K;Cu60Ni40:217 K;Ni65Cu35:200 K).The BCT(Bridgman Crystal Growth)model quantitatively elucidates this behavior,revealing a shift from solute-diffusion-dominated growth at low undercooling to thermally dominated diffusion at high undercooling(ΔT).Crucially,refined grains at high undercooling exhibit smaller sizes(10μm)and higher uniformity than those at low undercooling(20μm).These findings provide fundamental insights into non-equilibrium solidification mechanisms and establish a foundation for designing high-performance Ni-Cu alloys via deep undercooling processing. 展开更多
关键词 deep undercooling Ni-Cu alloys microstructural evolution grain refinement BCT model rapid solidification
原文传递
Influence of Undercooling on the Solidification Behaviour and Microstructure of Non-equilibrium Solidification of Cu-based Alloys
16
作者 LI Hejun AN Hongen +6 位作者 Willey Liew Yun Hsien Ismal Saad Bih Lii Chuab Nancy Julius Siambun CAO Shichao WANG Hongfu YAO Wei 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期610-618,共9页
The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increas... The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increasing the Cu content,the effect of Cu on the evolution of the microstructure and morphology of the Cu-Ni alloy during undercooling was studied.The mechanism of grain refinement at different degrees of undercooling and the effect of Cu content on its solidification behaviour were investigated.The solidification behaviour of Cu55Ni45 and Cu60Ni40 alloys was investigated using infrared thermometry and high-speed photography.The results indicate that both Cu55Ni45 and Cu60Ni40 alloy melts undergo only one recalescence during rapid solidification.The degree of recalescence increases approximately linearly with increasing undercooling.The solidification front of the alloy melts undergoes a transition process from a small-angle plane to a sharp front and then to a smooth arc.However,the growth of the subcooled melt is constrained to a narrow range,facilitating the formation of a coarse dendritic crystal morphology in the Cu-Ni alloy.At large undercooling,the stress breakdown of the directionally growing dendrites is primarily caused by thermal diffusion.The strain remaining in the dendritic fragments provides the driving force for recrystallisation of the tissue to occur,which in turn refines the tissue. 展开更多
关键词 UNDERCOOLING MICROSTRUCTURE grain refinement solidification rate
原文传递
Influence of Undercooling on the Non-equilibrium Solidification Process and Microstructure of Cu-Ni Alloys
17
作者 WANG Junyuan DU Wenhua +1 位作者 HAO Bohao WANG Hongfu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1151-1161,共11页
By applying the rapid solidification technique of deep undercooling,Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K,respectively.Microstructural images captured reveal grain refinement in ... By applying the rapid solidification technique of deep undercooling,Cu65Ni35 and Cu60Ni40 alloys achieved maximum undercoolings of 284 and 222 K,respectively.Microstructural images captured reveal grain refinement in both alloys across both large and small undercooling ranges.High-speed photography was used to analyze the relationship between solidification front morphology and undercooling,showing that dendrite remelting and fragmentation caused grain refinement under small undercooling,while stress-induced recrystallization is responsible under large undercooling.Microhardness testing further demonstrates a sudden drop in microhardness near the critical undercooling point,providing evidence for grain refinement due to recrystallization in large undercooling tissues. 展开更多
关键词 UNDERCOOLING MICROSTRUCTURE grain refinement solidification rate
原文传递
Corrosion behavior of an ultrafine-grained Ti6Al4V-5Cu alloy in artificial saliva containing fluoride ions
18
作者 Hui Liu Lizhen Shi +4 位作者 Susu Li Shuyuan Zhang Hai Wang Ling Ren Ke Yang 《Journal of Materials Science & Technology》 2025年第9期259-271,共13页
Ti6Al4V alloy has been widely used in dental applications,such as orthodontic mini-implants.However,it has been reported that fluoride ions could obviously accelerate the corrosion of implant materials and affect thei... Ti6Al4V alloy has been widely used in dental applications,such as orthodontic mini-implants.However,it has been reported that fluoride ions could obviously accelerate the corrosion of implant materials and affect their performance.This work aimed to improve the F^(−)erosion resistance of Ti6Al4V alloy through the strategy of both Cu addition and grain refinement.As contrasted with Ti6Al4V alloy,both the coarse-and ultrafine-grained Ti6Al4V-5Cu alloys effectively mitigated the acceleration of the fluoride ions to the anode process,because Cu substituents blocked the continuous damage of F·_(O) doped in the passive film.Furthermore,grain refinement enhanced the protective ability of the passive film,more oxides and less adsorption amount of fluorides presented in the passive film of ultrafine-grained Ti6Al4V-5Cu alloy than those of coarse-grained Ti6Al4V-5Cu alloy.Under the combination of Cu alloying and grain refinement,the ultrafine-grained Ti6Al4V-5Cu alloy is greatly appropriate for the fabrication of orthodontic devices. 展开更多
关键词 Cu-containing titasknium alloy Grain refinement Fluoride ions Corrosion Dental application
原文传递
Effects of low frequency electromagnetic casting on solidification macrostructure of GH4742superalloy
19
作者 Liang Zhang Lei Wang +3 位作者 Yang Liu Xiu Song Teng Yu Ran Duan 《China Foundry》 2025年第2期195-204,共10页
The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were i... The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were investigated through experiments and simulation.The results show that the average grain size decreases after application of LFEC.At the same time,the fraction of equiaxed grains increases compared with the ingots that without LFEC.In addition,the average grain size decreases and the fraction of equiaxed grains increases with increasing the current frequency.When the current frequency increases from 5 Hz to 20 Hz,the average grain size decreases from 5.39 mm to 4.74 mm,and the fraction of equiaxed grains increases from 41.21%to 55.24%.The distribution of Lorentz force,melt flow field and temperature field in the melt was simulated using COMSOL Multiphysics software.It is found that the Lorentz force increases and the forced convection is enhanced with increasing the current frequency,thus the melt flow velocity and heat transfer in the melt are promoted.It can facilitate the heterogenous nucleation in the melt,resulting in grain refinement,and further preventing hot cracking of large size ingots. 展开更多
关键词 low frequency electromagnetic casting SUPERALLOY SOLIDIFICATION hot cracking grain refinement
在线阅读 下载PDF
Influence of processing history on microstructure,mechanical properties,and electrical conductivity of Cu−0.7Mg alloy
20
作者 Alireza KALHOR Kinga RODAK +6 位作者 Marek TKOCZ Bartosz CHMIELA Ivo SCHINDLER Łukasz POLOCZEK Krzysztof RADWAŃSKI Hamed MIRZADEH Marian KAMPIK 《Transactions of Nonferrous Metals Society of China》 2025年第4期1197-1211,共15页
The effects of forward extrusion as well as extrusion combined with reversible torsion(KoBo extrusion),followed by additional deformation via the MaxStrain module of the Gleeble thermomechanical simulator,on the micro... The effects of forward extrusion as well as extrusion combined with reversible torsion(KoBo extrusion),followed by additional deformation via the MaxStrain module of the Gleeble thermomechanical simulator,on the microstructure,mechanical properties,and electrical conductivity of a Cu−0.7Mg(wt.%)alloy,were investigated.The simulation results highlighted the critical influence of processing history on determining the equivalent strain distribution.The sample subjected to forward extrusion at 400℃and subsequent MaxStrain processing(FM sample),possessed 76%lower grain size compared to the sample processed solely with MaxStrain(AM sample).Likewise,the KoBo-extruded and MaxStrain-processed sample(KM sample)exhibited 66%smaller grain size compared to the AM sample.Tensile test results revealed that the AM,FM,and KM samples,respectively,possessed 251%,288%,and 360%higher yield strength,and 95%,121%,and 169%higher tensile strength compared to the initial annealed alloy,as a result of grain refinement as well as deformation strengthening.Finally,the electrical conductivity measurements revealed that AM,FM,and KM samples,respectively,possessed electrical conductivity values of 37.9,35.6,and 32.0 MS/m,which,by considering their mechanical properties,makes them eligible to be categorized as high-strength and high-conductivity copper alloys. 展开更多
关键词 KoBo extrusion MaxStrain processing equivalent strain calculation grain refinement tensile properties electrical conductivity
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部