期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用RefineNet模型提取冬小麦种植信息的方法
被引量:
2
1
作者
宋德娟
魏青迪
+3 位作者
张承明
李峰
韩颖娟
范克琦
《遥感技术与应用》
CSCD
北大核心
2019年第4期720-726,共7页
冬小麦是我国主要的粮食作物,获取精细的冬小麦种植信息对于指导农业生产具有重要的意义。通过对RefineNet模型进行扩展,形成了适宜提取冬小麦种植信息的Ex-RefineNet(ExtendRefineNet)模型,Ex-RefineNet模型由两个子模型组成,Ex-Refine...
冬小麦是我国主要的粮食作物,获取精细的冬小麦种植信息对于指导农业生产具有重要的意义。通过对RefineNet模型进行扩展,形成了适宜提取冬小麦种植信息的Ex-RefineNet(ExtendRefineNet)模型,Ex-RefineNet模型由两个子模型组成,Ex-RefineNet-Edge子模型用于提取冬小麦种植区域的边缘像素,Ex-RefineNet-Inner子模型用于提取冬小麦种植区域的内部像素,使用贝叶斯模型对两个子模型的提取结果进行合并处理,形成最终提取结果。利用山东省山东大学和泰安市的16幅高分2号遥感影像进行实验,将每幅影像的2/3作为训练数据,其他数据作为测试数据,选择平均精度、查全率和Kappa系数作为对比指标,Ex-RefineNet模型的结果分别为0.93、0.92、0.91,而RefineNet模型的结果分别为0.86、0.84、0.83,说明本文给出的方法在提取冬小麦种植信息方面具有较明显的优势。
展开更多
关键词
影像分割
GF-2
refinenet
模型
贝叶斯模型
冬小麦
原文传递
结合上下文特征与CNN多层特征融合的语义分割
被引量:
5
2
作者
罗会兰
张云
《中国图象图形学报》
CSCD
北大核心
2019年第12期2200-2209,共10页
目的针对基于区域的语义分割方法在进行语义分割时容易缺失细节信息,造成图像语义分割结果粗糙、准确度低的问题,提出结合上下文特征与卷积神经网络(CNN)多层特征融合的语义分割方法。方法首先,采用选择搜索方法从图像中生成不同尺度的...
目的针对基于区域的语义分割方法在进行语义分割时容易缺失细节信息,造成图像语义分割结果粗糙、准确度低的问题,提出结合上下文特征与卷积神经网络(CNN)多层特征融合的语义分割方法。方法首先,采用选择搜索方法从图像中生成不同尺度的候选区域,得到区域特征掩膜;其次,采用卷积神经网络提取每个区域的特征,并行融合高层特征与低层特征。由于不同层提取的特征图大小不同,采用RefineNet模型将不同分辨率的特征图进行融合;最后将区域特征掩膜和融合后的特征图输入到自由形式感兴趣区域池化层,经过softmax分类层得到图像的像素级分类标签。结果采用上下文特征与CNN多层特征融合作为算法的基本框架,得到了较好的性能,实验内容主要包括CNN多层特征融合、结合背景信息和融合特征以及dropout值对实验结果的影响分析,在Siftflow数据集上进行测试,像素准确率达到82.3%,平均准确率达到63.1%。与当前基于区域的端到端语义分割模型相比,像素准确率提高了10.6%,平均准确率提高了0.6%。结论本文算法结合了区域的前景信息和上下文信息,充分利用了区域的语境信息,采用弃权原则降低网络的参数量,避免过拟合,同时利用RefineNet网络模型对CNN多层特征进行融合,有效地将图像的多层细节信息用于分割,增强了模型对于区域中小目标物体的判别能力,对于有遮挡和复杂背景的图像表现出较好的分割效果。
展开更多
关键词
语义分割
卷积神经网络
特征融合
选择搜索
refinenet
模型
原文传递
题名
利用RefineNet模型提取冬小麦种植信息的方法
被引量:
2
1
作者
宋德娟
魏青迪
张承明
李峰
韩颖娟
范克琦
机构
山东农业大学信息科学与工程学院
山东省数字农业工程技术研究中心
山东省气候中心
中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室
出处
《遥感技术与应用》
CSCD
北大核心
2019年第4期720-726,共7页
基金
国家重点研发计划项目(2017YFA0603004)
国家自然科学基金项目(41471299)
+1 种基金
山东省自然科学基金项目(ZR2017MD018)
中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室开放研究项目(CAMF-201701,CAMF-201803)
文摘
冬小麦是我国主要的粮食作物,获取精细的冬小麦种植信息对于指导农业生产具有重要的意义。通过对RefineNet模型进行扩展,形成了适宜提取冬小麦种植信息的Ex-RefineNet(ExtendRefineNet)模型,Ex-RefineNet模型由两个子模型组成,Ex-RefineNet-Edge子模型用于提取冬小麦种植区域的边缘像素,Ex-RefineNet-Inner子模型用于提取冬小麦种植区域的内部像素,使用贝叶斯模型对两个子模型的提取结果进行合并处理,形成最终提取结果。利用山东省山东大学和泰安市的16幅高分2号遥感影像进行实验,将每幅影像的2/3作为训练数据,其他数据作为测试数据,选择平均精度、查全率和Kappa系数作为对比指标,Ex-RefineNet模型的结果分别为0.93、0.92、0.91,而RefineNet模型的结果分别为0.86、0.84、0.83,说明本文给出的方法在提取冬小麦种植信息方面具有较明显的优势。
关键词
影像分割
GF-2
refinenet
模型
贝叶斯模型
冬小麦
Keywords
Image Segmentation
GF-2
refinenet model
Bayesian
model
Winter wheat
分类号
P753 [交通运输工程—港口、海岸及近海工程]
原文传递
题名
结合上下文特征与CNN多层特征融合的语义分割
被引量:
5
2
作者
罗会兰
张云
机构
江西理工大学信息工程学院
出处
《中国图象图形学报》
CSCD
北大核心
2019年第12期2200-2209,共10页
基金
国家自然科学基金项目(61862031,61462035)
江西省自然科学基金项目(20171BAB202014)
江西省赣州市“科技创新人才计划”项目~~
文摘
目的针对基于区域的语义分割方法在进行语义分割时容易缺失细节信息,造成图像语义分割结果粗糙、准确度低的问题,提出结合上下文特征与卷积神经网络(CNN)多层特征融合的语义分割方法。方法首先,采用选择搜索方法从图像中生成不同尺度的候选区域,得到区域特征掩膜;其次,采用卷积神经网络提取每个区域的特征,并行融合高层特征与低层特征。由于不同层提取的特征图大小不同,采用RefineNet模型将不同分辨率的特征图进行融合;最后将区域特征掩膜和融合后的特征图输入到自由形式感兴趣区域池化层,经过softmax分类层得到图像的像素级分类标签。结果采用上下文特征与CNN多层特征融合作为算法的基本框架,得到了较好的性能,实验内容主要包括CNN多层特征融合、结合背景信息和融合特征以及dropout值对实验结果的影响分析,在Siftflow数据集上进行测试,像素准确率达到82.3%,平均准确率达到63.1%。与当前基于区域的端到端语义分割模型相比,像素准确率提高了10.6%,平均准确率提高了0.6%。结论本文算法结合了区域的前景信息和上下文信息,充分利用了区域的语境信息,采用弃权原则降低网络的参数量,避免过拟合,同时利用RefineNet网络模型对CNN多层特征进行融合,有效地将图像的多层细节信息用于分割,增强了模型对于区域中小目标物体的判别能力,对于有遮挡和复杂背景的图像表现出较好的分割效果。
关键词
语义分割
卷积神经网络
特征融合
选择搜索
refinenet
模型
Keywords
semantic segmentation
convolutional neural network (CNN)
feature fusion
selection search
refinenet model
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
利用RefineNet模型提取冬小麦种植信息的方法
宋德娟
魏青迪
张承明
李峰
韩颖娟
范克琦
《遥感技术与应用》
CSCD
北大核心
2019
2
原文传递
2
结合上下文特征与CNN多层特征融合的语义分割
罗会兰
张云
《中国图象图形学报》
CSCD
北大核心
2019
5
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部