The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In...The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.展开更多
Reference-frame-independent measurement-device-independent QKD(RFI-MDI-QKD), immune to both the slow unknown drift of reference frames and detector side channel attacks, can generate information-theoretic secure keys....Reference-frame-independent measurement-device-independent QKD(RFI-MDI-QKD), immune to both the slow unknown drift of reference frames and detector side channel attacks, can generate information-theoretic secure keys. Despite its natural resistance to the slow drift of reference frames, the performance of practical RFI-MDI-QKD systems descends with the increasing drift of reference frames. In this paper, we demonstrate the worst relative rotation of reference frames for practical RFI-MDI-QKD systems, and investigate their performance against the worst-case scenario,both of which are unclear to date. Simulation results show that, practical RFI-MDI-QKD systems can achieve quite good performance even against the worst-case scenario, which clearly demonstrates that it is possible to implement practical MDI-QKD systems with freely drifting reference frames.展开更多
Recently, a novel reference-frame-independent measurement-device-independent quantum key distribution protocol was proposed, which can remove all detector side channels as well as tolerate unknown and slow variance of...Recently, a novel reference-frame-independent measurement-device-independent quantum key distribution protocol was proposed, which can remove all detector side channels as well as tolerate unknown and slow variance of reference frame without active alignment. In this paper, we propose a new tomographic method to estimate the key rate in that protocol. We estimate the key rate using conventional method and tomographic method respectively and compare the two methods by numerical simulation. The numerical simulation results show that tomographic approach is equivalent to the conventional approach, which can be used as an alternative method.展开更多
Reference-frame-independent quantum key distribution (RFI QKD) can generate secret keys without the alignment of reference frames, which is very robust in real-life implementations of QKD systems. However, the perfo...Reference-frame-independent quantum key distribution (RFI QKD) can generate secret keys without the alignment of reference frames, which is very robust in real-life implementations of QKD systems. However, the performance of decoy-state RFI QKD with both source errors and statistical fluctuations is still missing until now. In this paper, we investigate the performance of decoy-state RFI QKD in practical scenarios with two kinds of light sources, the heralded single photon source (HSPS) and the weak coherent source (WCS), and also give clear comparison results of decoy-state RFI QKD with WCS and HSPS. Simulation results show that the secret key rates of decoy-state RFI QKD with WCS are higher than those with HSPS in short distance range, but the secret key rates of RFI QKD with HSPS outperform those with WCS in long distance range.展开更多
Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a p...Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a passive decoy-state RFI-QKD protocol with heralded single-photon source(HSPS)and present its security analysis.Compared with RFI QKD using a weak coherent pulse source(WCPS),numerical simulations show that the passive decoy-state RFI QKD with HSPS performs better not only in secret key rate but also in secure transmission distance.Moreover,our protocol is robust against the relative motion of the reference frames as well as RFI QKD with the WCPS.In addition,we also exploit Hoeffding's inequality to investigate the finite-key effect on the security of the protocol.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China(Grant No.2020YFA0309702)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan Province(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies.
文摘The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.
基金Supported by the National Key Research and Development Program of China under Grant Nos.2018YFA0306400 and 2017YFA0304100the National Natural Science Foundation of China under Grant Nos.61475197,61590932,11774180,and 61705110+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant Nos.15KJA120002 and 17KJB140016the Natural Science Foundation of Jiangsu Province under Grant No.BK20170902the Outstanding Youth Project of Jiangsu under Grant No.BK20150039the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.KYCX18 0906
文摘Reference-frame-independent measurement-device-independent QKD(RFI-MDI-QKD), immune to both the slow unknown drift of reference frames and detector side channel attacks, can generate information-theoretic secure keys. Despite its natural resistance to the slow drift of reference frames, the performance of practical RFI-MDI-QKD systems descends with the increasing drift of reference frames. In this paper, we demonstrate the worst relative rotation of reference frames for practical RFI-MDI-QKD systems, and investigate their performance against the worst-case scenario,both of which are unclear to date. Simulation results show that, practical RFI-MDI-QKD systems can achieve quite good performance even against the worst-case scenario, which clearly demonstrates that it is possible to implement practical MDI-QKD systems with freely drifting reference frames.
基金Supported by the National Basic Research Program of China under Grant Nos.2011CBA00200 and 2011CB921200the National Natural Science Foundation of China under Grant Nos.61475148,61575183the "Strategic Priority Research Program(B)" of the Chinese Academy of Sciences under Grant Nos.XDB01030100,XDB01030300
文摘Recently, a novel reference-frame-independent measurement-device-independent quantum key distribution protocol was proposed, which can remove all detector side channels as well as tolerate unknown and slow variance of reference frame without active alignment. In this paper, we propose a new tomographic method to estimate the key rate in that protocol. We estimate the key rate using conventional method and tomographic method respectively and compare the two methods by numerical simulation. The numerical simulation results show that tomographic approach is equivalent to the conventional approach, which can be used as an alternative method.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304100)the National Natural Science Foundation of China(Grant Nos.61475197,61590932,11774180,and 61705110)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant Nos.15KJA120002 and 17KJB140016)the Outstanding Youth Project of Jiangsu Province,China(Grant No.BK20150039)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20170902)the Science Fund from the Nanjing University of Posts and Telecommunications,China(Grant No.NY217006)
文摘Reference-frame-independent quantum key distribution (RFI QKD) can generate secret keys without the alignment of reference frames, which is very robust in real-life implementations of QKD systems. However, the performance of decoy-state RFI QKD with both source errors and statistical fluctuations is still missing until now. In this paper, we investigate the performance of decoy-state RFI QKD in practical scenarios with two kinds of light sources, the heralded single photon source (HSPS) and the weak coherent source (WCS), and also give clear comparison results of decoy-state RFI QKD with WCS and HSPS. Simulation results show that the secret key rates of decoy-state RFI QKD with WCS are higher than those with HSPS in short distance range, but the secret key rates of RFI QKD with HSPS outperform those with WCS in long distance range.
基金Supported by the National Basic Research Program of China under Grant No 2013CB338002the National Natural Science Foundation of China under Grant Nos 61505261,61675235,61605248 and 11304397
文摘Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a passive decoy-state RFI-QKD protocol with heralded single-photon source(HSPS)and present its security analysis.Compared with RFI QKD using a weak coherent pulse source(WCPS),numerical simulations show that the passive decoy-state RFI QKD with HSPS performs better not only in secret key rate but also in secure transmission distance.Moreover,our protocol is robust against the relative motion of the reference frames as well as RFI QKD with the WCPS.In addition,we also exploit Hoeffding's inequality to investigate the finite-key effect on the security of the protocol.