期刊文献+
共找到8,220篇文章
< 1 2 250 >
每页显示 20 50 100
Reductivity and bundle shifts 被引量:1
1
作者 XU An-jian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第1期27-32,共6页
For the Hardy space H_E^2(R) over a ?at unitary vector bundle E on a ?nitely connected domain R, let TE be the bundle shift as [3]. If B is a reductive algebra containing every operator ψ(TE) for any rational functi... For the Hardy space H_E^2(R) over a ?at unitary vector bundle E on a ?nitely connected domain R, let TE be the bundle shift as [3]. If B is a reductive algebra containing every operator ψ(TE) for any rational function ψ with poles outside of R, then B is self adjoint. 展开更多
关键词 reductivity BUNDLE SHIFT multiply-connected DOMAIN
在线阅读 下载PDF
Smart Global Poverty Reduction Cooperation
2
作者 LU JIAJUN 《China Today》 2026年第1期39-41,共3页
Experts and officials shared their insights on poverty reduction cooperation and sustainable development during the 2025 International Seminar on Global Poverty Reduction Partnerships.
关键词 sustainable development international seminar OFFICIALS global poverty reduction cooperation experts poverty reduction
在线阅读 下载PDF
Advancements in dual-atom-site catalysts for electrocatalysis
3
作者 Pan Zhou Weidong Ruan +1 位作者 Tieli Zhou Jingqi Guan 《Nano Research》 2026年第1期140-158,共19页
Dual-atom-site catalysts(DASCs)have garnered a lot of interest in the electrocatalysis community because of their atomic usage,stability,activity,and selectivity.This review systematically introduces the latest advanc... Dual-atom-site catalysts(DASCs)have garnered a lot of interest in the electrocatalysis community because of their atomic usage,stability,activity,and selectivity.This review systematically introduces the latest advancements of DASCs for electrocatalytic applications.Design principles of DASCs are first discussed,including atom-atom,atom-cluster,and atom-particle synergy.Then,rational modulation tactics are creatively proposed to speed up the construction of high-performance DASCs for uncovering structure-performance relationships.Moreover,advanced characterization techniques are provided to show the dynamic evolution of dual-atom sites throughout electrocatalysis.Finally,future challenges and perspectives are taken into account.This paper provides useful directions for a better understanding and design of DASCs for eco-friendly energy storage and conversion technologies. 展开更多
关键词 dual-atom-site catalyst oxygen reduction reaction oxygen evolution reaction carbon dioxide reduction reaction nitrate reduction reaction
原文传递
Advancing Energy Development with MBene: Chemical Mechanism, AI, and Applications in Energy Storage and Harvesting
4
作者 Jai Kumar Nadeem Hussain Solangi +5 位作者 Rana R.Neiber Fangyuan Bai Victor Charles Pengfei Zhai Zhuanpei Wang Xiaowei Yang 《Nano-Micro Letters》 2026年第3期569-629,共61页
MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due... MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development.MXene derivative,MBene,diversifies its focus on energy storage and harvesting due to its exceptional electrical conductivity,structural flexibility,and mechanical properties.This comprehensive review describes the sandwich-like structure of the synthesized MBene,derived from its multilayered parent material and its distinct chemical framework to date.The fields of focus encompass the investigation of novel MBenes,the study of phase-changing mechanisms,and the examination of hex-MBenes,ortho-MBenes,tetra-MBenes,tri-MBenes,and MXenes with identical transition metal components.A critical analysis is also provided on the electrochemical mechanism and performance of MBene in energy storage(Li/Na/Mg/Ca/Li–S batteries and supercapacitors),as well as conversion and harvesting(CO_(2) reduction,and nitrogen reduction reactions).The persistent difficulties associated with conducting experimental synthesis and establishing artificial intelligence-based forecasts are extensively deliberated alongside the potential and forthcoming prospects of MBenes.This review provides a single platform for an overview of the MBene’s potential in energy storage and harvesting. 展开更多
关键词 MBene MXene Energy storage CO_(2)reduction Nitrogen reduction reactions Artificial intelligence
在线阅读 下载PDF
Mechanisms and challenges of nanoporous confinement for carbon dioxide electrocatalysis
5
作者 Suxin Bai Puxia Yan +4 位作者 Bingbing Li Xiangfa Zhu Long He Min Kuang Jianping Yang 《Nano Research》 2026年第1期97-114,共18页
The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific... The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific high-value chemicals continues to be a central goal in electrocatalysis research.Recently,nanoporous confined electrocatalysts have garnered attention due to their unique pore structures,which not only increase the accessibility and utilization of active sites but also promote the enrichment and stabilization of key reaction intermediates and modulate the local reaction microenvironment.These combined effects contribute to improved reaction kinetics and enhanced product selectivity.This review systematically summarizes the mechanistic foundations of nanoporous confinement in CO_(2)RR,emphasizing its role in governing reaction pathways and selectivity.We introduce the fundamental design principles of nanoporous confined electrocatalysts,detailing how their pore size,tortuosity,and connectivity influence CO_(2)diffusion,local concentration gradients,and electrolyte accessibility.Then highlight how confinement-induced spatial regulation facilitates intermediate accumulation,directional proton transfer,and local pH modulation,collectively steering product selectivity toward desired C_(1) and multi-carbon(C_(2+))products.Representative material systems and structure-performance relationships are discussed to illustrate these effects.Finally,we summarize the current challenges in mechanistic understanding and practical implementation,and propose future directions for developing nanoporous systems that integrate controlled transport,catalytic reactivity,and system-level scalability. 展开更多
关键词 NANOPORES confinement effect carbon dioxide reduction MECHANISMS SELECTIVITY
原文传递
Effect of hydrogen sulfide on reductive leaching of chalcopyrite by copper
6
作者 Xin SUN Rui LIAO +5 位作者 Zu-chao PAN Yi-sheng ZHANG Mao-xin HONG Yan-sheng ZHANG Jun WANG Guan-zhou QIU 《Transactions of Nonferrous Metals Society of China》 2026年第1期287-297,共11页
A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)... A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)S,metallic copper converts chalcopyrite into bornite(Cu_(5)FeS_(4)).However,the introduction of H_(2)S promotes the formation of chalcocite(Cu_(2)S)by altering the oxidation pathway of copper.Electrochemical analysis demonstrates that the presence of H₂S significantly reduces the corrosion potential of copper from 0.251 to−0.223 V(vs SHE),reaching the threshold necessary for the formation of Cu_(2)S.Nevertheless,excessive H_(2)S triggers sulfate reduction via the reaction of 8Cu+H_(2)SO_(4)+3H_(2)S=4Cu_(2)S+4H_(2)O(ΔG=−519.429 kJ/mol at 50℃),leading to inefficient copper utilization. 展开更多
关键词 chalcopyrite reduction COPPER hydrogen sulfide CHALCOCITE
在线阅读 下载PDF
Biomimetic Design of“Trunk-Branch-Leaf”Metallene Electrode for Efficient CO_(2) Electroreduction
7
作者 Min Zhang Ronghao Bai +3 位作者 Yuan Liang Xun Zhu Qian Fu Qiang Liao 《Carbon Energy》 2026年第1期95-104,共10页
Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic de... Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic design of“Trunk-Branch-Leaf”strategy is proposed to prepare the ultrathin edge-riched Zn-ene“leaves”with a thickness of~2.5 nm,adjacent Zn-ene cross-linked with each other,which are supported by copper nanoneedle“branches”on copper mesh“trunks,”named as Zn-ene/Cu-CM.The resulting superstructure enables the formation of an interconnected network and multiple channels,which can be used as an electrocatalytic CO_(2) reduction reaction(CO_(2)RR)electrode to allow a fast charge and mass transfer as well as a large electrolyte reservoir.By virtue of the distinctive structure,the obtained Zn-ene/Cu-CM electrode exhibits excellent selectivity and activity toward CO production with a maximum Faradaic efficiency of 91.3%and incredible partial current density up to 40 mA cm^(−2),outperforming most of the state-of-the-art Zn-based electrodes for CO_(2) reduction.The phenolphthalein color probe combined with in situ attenuated total reflection-infrared spectroscopy uncovered the formation of the localized pseudo-alkaline microenvironment at the interface of the Zn-ene/Cu-CM electrode.Theoretical calculations confirmed that the localized pH as the origin is responsible for the adsorption of CO_(2) at the interface and the generation of *COOH and *CO intermediates.This study offers valuable insights into developing efficient electrodes through synergistic regulation of reaction microenvironments and active sites,thereby facilitating the electrolysis of practical CO_(2) conversion. 展开更多
关键词 carbon dioxide reduction local pH metallene reaction microenvironment trunk-branch-lea
在线阅读 下载PDF
Optimizing the RuCo Ratio for More Efficient and Durable Oxygen Reduction in Acidic Media
8
作者 WEI Mingrui ZHANG Shuai +1 位作者 HUANG Shuo WANG Chao 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期25-32,共8页
The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a serie... The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs. 展开更多
关键词 ELECTROCATALYSIS oxygen reduction DURABILITY RuCo/C fuel cell
原文传递
Optimized Skimmer Design for Enhanced Oil Spill Recovery and Marine Environmental Protection:Addressing Key Challenges in Oceanic Pollution Control
9
作者 Alireza Zahedi Behzad Kanani 《哈尔滨工程大学学报(英文版)》 2026年第1期175-196,共22页
Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This re... Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This research presents a novel approach to creating and refining oil absorbent coatings,introducing a unique oil spill removal skimmer enhanced with a super hydrophobic polyaniline(PANI)nanofiber coating.The goal of this study was to improve oil absorption performance,increase the contact angle,lower drag,reduce energy consumption,achieve high desirability,and lower production costs.PANI treated with hydrochloric acid was a key focus as it resulted in higher porosity and smaller pore diameters,providing a larger surface area,which are crucial factors for boosting oil absorption and minimizing drag.To optimize optimal nanofiber morphology,PANI synthesized with methanesulfonic acid was first dedoped and then redoped with hydrochloric acid.After optimization,the most effective skimmer coating was achieved using a formulation consisting of 0.1%PANI,an ammonium persulfate/aniline ratio of 0.4,and an acid/aniline ratio of 9.689,along with redoped PANI nanofibers.The optimized skimmer exhibited a remarkable contact angle of 177.477°.The coating achieved drag reduction of 32%,oil absorption of 88.725%,a cost of$1.710,and a desirability rating of 78.5%.In this study,an optimized skimmer coat containing super hydrophobic coat-PANI nanofibers was fabricated.By enhancing contact angle and reducing drag,these coatings increased the skimmer performance by improving oil absorption and reducing fuel consumption. 展开更多
关键词 Nanofiber-based skimmer Oil absorption Drag reduction Polyaniline nanofiber SUPERHYDROPHOBIC Oil spill removal
在线阅读 下载PDF
Fe-loaded S,N co-doped carbon catalyst for oxygen reduction reaction with enhanced electrocatalytic activity and durability
10
作者 Shengzhi He Chunwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期315-321,共7页
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-... Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications. 展开更多
关键词 zinc-air batteries oxygen reduction reaction iron-loaded nitrogen-doped carbon sulfur-doping
在线阅读 下载PDF
Revolutionizing titanium production:A comprehensive review of thermochemical and molten salt electrolysis processes
11
作者 Haohang Ji Shenghui Guo +3 位作者 Lei Gao Li Yang Hengwei Yan Hongbo Zeng 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期15-34,共20页
Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive n... Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive nature of titanium,metallic titanium production involves extensive procedures and high costs.Considering its advantages and limitations,the European Union has classified titanium metal as a critical raw material(CRM)of low category.The Kroll process is predominantly used to produce titanium;however,molten salt electrolysis(MSE)is currently being explored for producing metallic titanium at a low cost.Since 2000,electrolytic titanium production has undergone a wave of technological advancements.However,because of the intermediate and disproportionation reactions in the electrolytic titanium production process,the process efficiency and titanium purity according to industrial standards could not be achieved.Consequently,metallic titanium production has gradually diversified into employing technologies such as thermal reduction,MSE,and titanium alloy preparation.This study provides a comprehensive review of research advances in titanium metal preparation technologies over the past two decades,highlighting the challenges faced by the existing methods and proposing potential solutions.It offers useful insights into the development of low-cost titanium preparation technologies. 展开更多
关键词 titanium preparation titanium alloy thermal reduction molten salt electrolysis
在线阅读 下载PDF
Trifunctional endogenous mediator orchestrates efficient biocathodes via synergistic electron transfer and enzyme catalytic site modulation
12
作者 Tianhao Zhao Junlan Fang +11 位作者 Yangdi Niu Kai Zhu Libo Wang Jialiang Pan Chenhong Liu Wenbo Shi Yujia Li Xiaolei Wang Qing Zhang Lin Yang Zhengyu Bai Jun Lu 《Nano Research》 2026年第1期314-323,共10页
Microbial catalysts offer compelling advantages for oxygen reduction reaction(ORR)in microbial fuel cell(MFC)cathodes,including reduced costs and extended operational lifespans.However,their practical application rema... Microbial catalysts offer compelling advantages for oxygen reduction reaction(ORR)in microbial fuel cell(MFC)cathodes,including reduced costs and extended operational lifespans.However,their practical application remains limited by insufficient intrinsic activity at catalytic protein sites and restricted charge accessibility,both of which constrain ORR kinetics.Here,we report the development of an efficient trifunctional bioendogenous system based on menaquinone-7(MK-7),enriched from Bacillus subtilis natto(natto digester strain(ND))through a straightforward fermentation strategy.The engineered MK-7 simultaneously performs three critical functions:(i)facilitating mediated electron transfer between bacteria and electrodes,(ii)regulating the in-situ formation of size-controlled conductive polydopamine nanostructures that enhance direct electron transfer pathways,and(iii)modulating the electronic structure of cytochrome c(Cyt c)to activate its catalytic center and optimize O_(2)adsorption capacity.Through these synergistic effects,our engineered nano-hybrid ND-FM@sPDA(FM is fermentation and sPDA is size-controlled conductive polydopamine)achieves an oxygen reduction current density of 3.83 mA·cm^(-2),representing a 1.54-fold enhancement over pristine ND(2.48 mA·cm^(-2)).MFCs constructed with the ND-FM@sPDA biocathode deliver a peak power density of 412μW·cm^(-2),surpassing previously reported microbial catalysts for similar applications.This work elucidates novel regulatory mechanisms for optimizing biocatalysts at the molecular level and provides critical insights for advancing sustainable bioelectrocatalytic technologies with enhanced performance. 展开更多
关键词 endogenous mediator enzyme engineering biocathodes microbial fuel cell oxygen reduction reaction
原文传递
Heteroatom‑Coordinated Fe–N_(4) Catalysts for Enhanced Oxygen Reduction in Alkaline Seawater Zinc‑Air Batteries
13
作者 Wenhan Fang Kailong Xu +5 位作者 Xinlei Wang Yuanhang Zhu Xiuting Li Hui Liu Danlei Li Jun Wu 《Nano-Micro Letters》 2026年第3期554-568,共15页
Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction... Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity. 展开更多
关键词 Single-atom catalyst Zinc-air battery Seawater catalyst Oxygen reduction reaction
在线阅读 下载PDF
Cobalt‑Based Electrocatalysts for Sustainable Nitrate Conversion:Structural Design and Mechanistic Advancements
14
作者 GuoLiang Chang Xueqiu Chen +2 位作者 Jing‑Jing Lv Zhijie Kong Zheng‑Jun Wang 《Nano-Micro Letters》 2026年第3期37-84,共48页
Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt... Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt-based electrocatalysts,emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction(NO3RR)through dimensional control,compositional tuning,and coordination microenvironment modulation.Notably,by critically analyzing metallic cobalt,cobalt alloys,cobalt compounds,cobalt single atom and molecular catalyst configurations,we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR,including the dynamic reconstruction during operation and its impact on active site.Synergizing experimental breakthroughs with computational modeling,we decode mechanisms underlying competitive hydrogen evolution suppression,intermediate adsorption-energy optimization,and durability enhancement in complex aqueous environments.The development of cobalt-based catalysts was summarized and prospected,and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced.Bridging surface science and applications,it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably. 展开更多
关键词 Electrocatalytic nitrate reduction reaction Cobalt-based Electrocatalysts Electronic structure Coordination environment
在线阅读 下载PDF
Atomic-level local-structure engineering of Pt-group oxygen electrocatalysts for fuel cells and water electrolyzers
15
作者 Yang Ji Haixia Zhong +5 位作者 Liang Qiao Caini Ma Qinyi Hu Yuri Nikolaichik Kebin Chi Xinbo Zhang 《Nano Research》 2026年第1期159-179,共21页
Proton-exchange membrane fuel cell and water electrolyzer(PEMFC and PEMWE)with high conversion efficiency and zero-carbon emission stand out as an attractive strategy for efficient conversion between hydrogen energy a... Proton-exchange membrane fuel cell and water electrolyzer(PEMFC and PEMWE)with high conversion efficiency and zero-carbon emission stand out as an attractive strategy for efficient conversion between hydrogen energy and renewable electricity.As a key component,efficient oxygen electrocatalyst for promoting sluggish reaction kinetics of oxygen reduction and evolution reaction(ORR and OER)under harsh operation conditions severely limited progress of these devices.Among various candidates,Ptgroup(Pt,Ir,and Ru)-based electrocatalysts are still the most active ORR/OER catalysts.However,the scarcity,high cost,and questionable stability restrict the widespread applications and the commercialization of PEMWE/PEMFC.Progresses in synthesizing atomically dispersed single/multiple-atom catalysts(SACs/MACs)offer new opportunities to Pt-group ORR/OER catalysts owing to nearly 100% metal utilization and high catalytic activities.Extensive efforts have been continuously devoted to optimizing the local structure of Pt-group OER/ORR catalysts at atom-level for further enhancing stability and activity.In this review,universal synthesis methods to prepare Ptgroup SACs are discussed first,highlighting crucial factors which affect the structure and catalytic performance.Afterward,advanced characterization techniques for directly confirming atomic dispersed metal atoms were introduced,including aberration-corrected high-angle-annular-dark-field scanning transmission electron microscopy and X-ray absorption spectroscopy.Importantly,considerations for rational catalyst design and typical Pt-group SACs/MACs are summarized regarding the regulation strategy of atomically dispersed metal sites and various supports,and effects of metal-support interaction on the catalytic performance.Finally,key challenges and proposed perspectives for future development of atomically dispersed Pt-group oxygen electrocatalysts for fuel cell and electrolyzer are briefly discussed. 展开更多
关键词 Pt-group metal single-atom electrocatalyst oxygen reduction reaction oxygen evolution reaction fuel cell water electrolyzer
原文传递
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
16
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
Enhanced nitrate reduction to ammonia using Cu-Ni catalyst:Synergistic mechanisms and reaction pathways
17
作者 Yansen Qu Xin Li +4 位作者 Yingjie Xia Haosheng Lan Le Ding Jing Zhong Xinghua Chang 《Journal of Environmental Sciences》 2026年第1期23-32,共10页
Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate... Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts. 展开更多
关键词 Nitrate reduction to ammonia Copper-nickel nanoalloy Reaction pathway
原文传递
Reshaping the Ride-Hail--The new cohort of tech-sawy,blue-collar workers
18
作者 Zhang Yage 《Beijing Review》 2026年第3期34-35,共2页
When several major ride-hailing platforms in China announced reductions in their commission rates earlier in 2025,it wasn’t just a business headline,it was a bonus for drivers.For them,even a slight decrease in the p... When several major ride-hailing platforms in China announced reductions in their commission rates earlier in 2025,it wasn’t just a business headline,it was a bonus for drivers.For them,even a slight decrease in the platform commission on each fare can add up to hundreds more yuan(dozens of U.S.dollars)at the end of a long month. 展开更多
关键词 commission rates BONUS ride hailing blue collar workers tech savvy drivers reductions their commission rates platform commission
原文传递
Heterointerface-engineered electron-bridge in hollow carbon nanotube-anchored Fe_(2)P/FeCoP electrocatalyst for highly stable Zn-air batteries
19
作者 Zhixian Shi Yue Du +11 位作者 Zhiyi Zhong Song Pan Xiaonan Xu Ankang Shi Jijian Zhang Dongsheng Cao Haiyan Hu Dongbin Xiong Yisi Liu Jianqing Zhou Lina Zhou Yao Xiao 《Nano Research》 2026年第1期542-554,共13页
Transition metal phosphides(TMPs)hold promise as effective bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries(RZABs),yet their practical application is hindered by inadequate durability and sluggis... Transition metal phosphides(TMPs)hold promise as effective bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries(RZABs),yet their practical application is hindered by inadequate durability and sluggish kinetics.Herein,we design a heterophosphate composite comprising Fe_(2)P-FeCoP heterojunctions anchored on onedimensional(1D)hollow N,P-doped carbon nanotubes(Fe_(2)PFeCoP@HNPC)through controlled metal modulation of anilinephytate nanorods.Critically,the interfacial electronic coupling between Fe_(2)P and FeCoP induces a cross-interfacial electronbridge network,which drives charge redistribution to accelerate interfacial electron transfer and refines the d band adsorption energetics for optimized oxygen intermediate binding.Coupled with its hollow architecture,Fe_(2)P-FeCoP@HNPC enables synergistic mass/charge transfer enhancement.The synergistic electronic-structural effects endow Fe_(2)P-FeCoP@HNPC with exceptional bifunctional activity,achieving a high oxygen reduction reaction(ORR)half-wave potential(0.83 V vs.reversible hydrogen electrode(RHE))and low oxygen evolution reaction(OER)overpotential(1.53 V@10 mA·cm^(-2)),attributed to the stabilized electron-bridge effect and hierarchical mass/charge transfer dynamics.Fe_(2)P-FeCoP@HNPC assembled RZAB achieves a peak power density of 145 mW·cm^(-2) and ultralong cycling stability(>1240 h)with negligible decay.This work demonstrates a universal strategy to harmonize electronic and structural engineering in TMPs for high-performance electrochemical energy systems. 展开更多
关键词 hollow carbon nanotube phase reconstruction electron-bridge oxygen reduction reaction oxygen evolution reaction rechargeable zinc-air battery
原文传递
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
20
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部